Efficacy of Electrical Muscle Stimulation in Clinical Practice

V.N. Obolenskiy¹,²

¹City Hospital #13 (Moscow, Russia), ²RNRMU (Moscow, Russia)
Disclosures

Nothing to disclose
Relevance

The thromboembolic complications occur in 1-2% of all hospitalized patients, cause more than 10% of all deaths, are the leading cause of death in hospitalized trauma patients.

The generally accepted methods of prevention of thromboembolic complications

Drug prevention
Compression knitwear
Early activation of the patient
Intermittent pneumocompression
Passive movements

None of these methods does not use the most important mechanism in ensuring normal physiological conditions, the outflow of venous blood – the work of the muscular-venous pump of the shin.
Methods for the prevention of thromboembolic complications in trauma patients under external fixator or skeletal traction?

Drug prevention - yes!

Compression knitwear
Early activation of the patient
Intermittent pneumocompression
Passive movement
Relevance

Despite all prevention methods over the past decade in the world, the rate of deep vein thrombosis increased by 3.1 times, the incidence of pulmonary embolism increased by 2.5 times.

Electropulse Myostimulation

The most effective way of stimulating muscle pump and prevention of venous stasis

Kaplan R.E. et al., Thromb Haemost 2002 Aug; 88(2)200-4
Griffin M. et al., Eur J Vasc Endovasc Surg 2010 Dec;40(6):766-71
Czyrny J.J. et al., Vascular 2010 Jan-Feb; 18(1):20-7
Electropulse Myostimulation

"Training walk" in the conditions of immobilization of the limb:

- the elimination of edema and lymphedema,
- improvement of venous outflow
- the increase in arterial inflow,
- improvement of microcirculation,
- the increase of circulating blood volume in the limb,
- prevention of thromboembolic complications
Own research

60 patients 40 to 85 years
Long operational manual (4.0 ± 1.2 hours)
The high risk of thromboembolic complications

<table>
<thead>
<tr>
<th></th>
<th>EMS group (n=30)</th>
<th>Control group (n=30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep vein thrombosis of the shin without signs of pulmonary embolism</td>
<td>1 (3.3%)</td>
<td>10 (33.3%)</td>
</tr>
<tr>
<td>Thromboembolism of pulmonary artery branches</td>
<td>0</td>
<td>2 (6.7%)</td>
</tr>
</tbody>
</table>

p=0.008

PURPOSE OF THE STUDY

Evaluate the effectiveness of indirect electro myostimulation (EMS) in the prevention of thromboembolic events (TE) and reduction of terms of treatment and rehabilitation of patients with fractures of the shin bones (FSB).

V.N. Obolenskiy, A.V. Karpenko / Wound Medicine 2014;5:25-28
MATERIALS AND METHODS

A prospective randomized controlled trial

60 patients with closed fractures of the tibia (segment 4 on the classification of AO/ASIF)

Timing of the injury – 0.5 to 3.0 hours
The treatment algorithm of all patients:

1. Stabilization of the fracture - external fixator or skeletal traction
2. Assigning low molecular weight heparins
3. After the relief of edema - the final reduction and fixation (intramedullary or extramedullary) under the control of image intensifier
MATERIALS AND METHODS

Research Group

30 patients
(18 men, 12 women; mean age 42.4 ± 1.5 years) - 2 sessions EMS, 3 hours daily from the first day

Control group

30 patients
(17 males, 13 females; mean age 44.0 ± 2.2 years)
MATERIALS AND METHODS
RESULTS

<table>
<thead>
<tr>
<th></th>
<th>EMS group n=30</th>
<th>Control group n=30</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>The period of relief of the edema, days</td>
<td>5,1 ± 0,5</td>
<td>8,2 ± 0,7</td>
<td>< 0,05</td>
</tr>
<tr>
<td>The period until the final osteosynthesis, days</td>
<td>7,3 ± 0,7</td>
<td>10,4 ± 0,9</td>
<td>< 0,01</td>
</tr>
<tr>
<td>The duration of hospitalization, days</td>
<td>16,6 ± 1,0</td>
<td>17,7 ± 1,3</td>
<td>0,02</td>
</tr>
<tr>
<td>The frequency of thromboembolic complications</td>
<td>0</td>
<td>(14,3%)</td>
<td>< 0,001</td>
</tr>
</tbody>
</table>
RESULTS

<table>
<thead>
<tr>
<th></th>
<th>EMS group n=30</th>
<th>Control group n=30</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>The increase in the index of the SF-36 to the 5th day after the final osteosynthesis</td>
<td>24.9%</td>
<td>14.5%</td>
<td>< 0.05</td>
</tr>
<tr>
<td>The increase range of motion (flexion) after the final osteosynthesis</td>
<td>71.9%</td>
<td>16.7%</td>
<td>< 0.01</td>
</tr>
<tr>
<td>The increased range of motion (extension) after the final osteosynthesis</td>
<td>194.1%</td>
<td>10.2%</td>
<td>< 0.002</td>
</tr>
</tbody>
</table>
CONCLUSIONS

Application of the methodology EMS managed to avoid thromboembolic complications, improve the quality of life of the patients during hospital stay, reduce the period of treatment and rehabilitation.
DISCUSSION

The use of this technology allows to quickly arrest the peripheral edema and thereby reduce the time of the final osteosynthesis.

The muscle training in conditions of immobilization of the limb does not allow to develop the atrophy and thereby shortens the rehabilitation period.
Acknowledgements
Отделение ран и раневой инфекции
Department of wounds and wound infections

Study Personnel:

Surgeons - V.N. Obolenskiy¹,², K.V. Lobastov², L.A. Laberko², P.S. Leval¹

Trauma surgeons – A.V. Karpenko¹,³, An.A. Semenisty¹,⁴

Nurses – all nurses in surgery/trauma/orthopedic units¹

¹City Hospital #13 (Moscow, Russia), ²RNRMU (Moscow, Russia), ³RUFP (Moscow, Russia), ⁴1st MSMU (Moscow, Russia)
Thank you for your attention!