Operational behavior and reforming kinetics over Ni/YSZ of a planar type pre-reformer for SOFC systems

Van Nhu Nguyen, Ludger Blum, Roland Peters
Forschungszentrum Jülich GmbH, Germany
va.nguyen@fz-juelich.de
Outline

- Introduction
- Global reaction kinetics
- Experimental setup
- Results
- Modeling
- Conclusions
Basic layout of the SOFC system

Reaction in the Cathode:
\[O_2 + 4 \text{ e}^- \leftrightarrow 2 \text{ O}^{2-} \]

Reactions in the Anode:
\[\text{H}_2 + \text{O}^{2-} \leftrightarrow \text{H}_2\text{O} + 2 \text{ e}^- \]
\[\text{CO} + \text{O}^{2-} \leftrightarrow \text{CO}_2 + 2 \text{ e}^- \]

Institute of Energy and Climate Research – Electrochemical Process Engineering (IEK-3)
Steam reforming reactions of methane

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Reaction Equation</th>
<th>ΔH (25 °C) [kJ/mol]</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>$\text{CH}_4 + \text{H}_2\text{O} \leftrightarrow \text{CO} + 3 \text{H}_2$</td>
<td>-206</td>
</tr>
<tr>
<td>R2</td>
<td>$\text{CH}_4 + 2 \text{H}_2\text{O} \leftrightarrow \text{CO}_2 + 4 \text{H}_2$</td>
<td>-165</td>
</tr>
<tr>
<td>R3</td>
<td>$\text{CH}_4 + \text{CO}_2 \leftrightarrow 2 \text{CO} + 2 \text{H}_2$</td>
<td>-247</td>
</tr>
<tr>
<td>R4</td>
<td>$\text{CO} + \text{H}_2\text{O} \leftrightarrow \text{CO}_2 + \text{H}_2$</td>
<td>41</td>
</tr>
<tr>
<td>R5</td>
<td>$\text{CH}_4 \leftrightarrow \text{C} + 2 \text{H}_2$</td>
<td>-75</td>
</tr>
<tr>
<td>R6</td>
<td>$2 \text{CO} \leftrightarrow \text{C} + \text{CO}_2$</td>
<td>172</td>
</tr>
<tr>
<td>R7</td>
<td>$\text{CO} + \text{H}_2 \leftrightarrow \text{C} + \text{H}_2\text{O}$</td>
<td>131</td>
</tr>
</tbody>
</table>
Models for global reaction kinetics

1) Arrhenius type

\[r_{r, \text{Arr}} = F \cdot p_{\text{CH}_4}^\alpha \cdot p_{\text{H}_2\text{O}}^\beta \cdot \exp \left(-\frac{E_a}{R \cdot T} \right) \]

2) Langmuir-Hinshlewood type

\[r_{r, \text{Lang}} = k \frac{p_{\text{CH}_4} \cdot p_{\text{H}_2\text{O}} \cdot K_{\text{CH}_4} \cdot K_{\text{H}_2\text{O}}}{\left(1 + p_{\text{CH}_4} K_{\text{CH}_4} + p_{\text{H}_2\text{O}} \cdot K_{\text{H}_2\text{O}} \right)^2} \]

3) Equilibrium approach

\[r_{r, \text{eq}} = k \cdot p_{\text{CH}_4} \cdot p_{\text{H}_2\text{O}} \cdot \left(1 - \frac{p_{\text{CO}} \cdot p_{\text{H}_2}^3}{K_{e,\text{STR}} \cdot p_{\text{CH}_4} \cdot p_{\text{H}_2\text{O}}} \right) \]

4) Water shift reaction approach

\[r_s = k_s \cdot p_{\text{CO}} \cdot \left(1 - \frac{p_{\text{CO}_2} \cdot p_{\text{H}_2}}{K_{e,s} \cdot p_{\text{CO}} \cdot p_{\text{H}_2\text{O}}} \right) \]
Global reaction kinetics (Arrhenius type)

$$r_{r,\text{Arr}} = k \cdot p_{\text{CH}_4}^\alpha \cdot p_{\text{H}_2\text{O}}^\beta$$

where

$$k = A \cdot \exp \left(-\frac{E_a}{R \cdot T} \right)$$

Literature data review: inconsistent results of kinetics *

α: 0.85 – 1.4 ($\alpha=1$ was used very often)

β: negative and positive values

E_a: 42 - 208 kJ/mol

Motivation:

- Find the ”real” global kinetics of steam reforming reactions
- Optimization of pre-reformer for SOFC-system

* Andersson M, Yuan J, Sunden B, Applied Energy 2010; 87:1461
Design of a 5-layer pre-reformer using air heater

Catalyst: Ni/YSZ (Ni + 8 mol% Y$_2$O$_3$-stabilized ZrO$_2$)
Flow scheme of the experimental setup

Institute of Energy and Climate Research – Electrochemical Process Engineering (IEK-3)
Results

The comparison between the compositions for equilibrium and measurement as function of temperature and space-time

Analytical methods

- dew-point-measurement
- gas-chromatographic method

\[\tau = \frac{V}{v_o} \]
reactor volume
volumetric feed rate
Graphs of concentration versus space time

The experimental data fit not first order kinetics for methane concentration.

At 610°C, the concentration of methane can be described by the following equations:

- \(y = e^{-1.861x} \)
- \(y = e^{-2.25x} \)
- \(y = e^{-3.09x} \)

- For S/C=2, \(k = 46 \)
- 70% AOGGR, \(k = 155 \)
- 80% AOGGR, \(k = 372 \)

\(\tau = \frac{V}{v_o} = \frac{\text{reactor volume}}{\text{volumetric feed rate}} \)
Modeling (Arrhenius type)

\[
\begin{align*}
\tau &= \frac{V}{v_o} = \text{reactor volume} \\
&= \frac{\text{volumetric feed rate}}{
\end{align*}
\]

Integrated reaction rates from exp. data of the both reformers

\[
- \int_0^\tau \frac{dx_{CH_4}}{x_{CH_4}^2 \cdot x_{H_2O}} = k \cdot \tau
\]

\[
\int_0^\tau \frac{d(\xi)}{\left(x_{0,CH_4} - \xi\right)^2 \cdot \left(x_{0,H_2O} - \xi\right)} = k \cdot \tau
\]

\(\xi\): Progress variable of reforming reaction

\[
\begin{align*}
k &= 106 \\
k &= 66 \\
k &= 35 \\
k &= 14 \\
k &= 6.3
\end{align*}
\]
Temperature dependency of reaction rate

\[\ln(k) = -6,314 \times \left(\frac{1000}{T} \right) + 10,87 \]

Temperature: 350°C – 620°C
\[E_a = 53 \text{ kJ/mol}^* \]

Temperature: 460°C – 740°C
\[E_a = 54 \text{ kJ/mol} \]

\[\ln(k) = -6,524 \times \left(\frac{1000}{T} \right) + 11,316 \]

Ea = 50 kJ/mol**

*** Liu, K., Song, C., Subramani, V. (Eds.) Wiley & Sons Publication; 2010.
Effect of anode off-gas recycling (AOGR)

\[\int_0^\tau \frac{dx_{\text{CH}_4}}{x_{\text{CH}_4}^2 \cdot x_{\text{H}_2\text{O}}} = k \cdot \tau \]

\[\int_0^\tau \frac{d\xi}{(x_{0,\text{CH}_4} - \xi)^2 \cdot (x_{0,\text{H}_2\text{O}} - \xi)} = k \cdot \tau \]

\(\xi \): Progress variable of reforming reaction

AOGGR at 70% fuel utilization

Example at 610°C:

Without AOGR, \(k = 46 \)

70% AOGR, \(k = 155 \)

80% AOGR, \(k = 372 \)

\(\text{Ea} = 117 \text{ kJ/mol} \)
Conclusions

- Two different planar pre-reformers containing Ni/YSZ catalyst were tested for operational behavior and kinetics of methane steam reforming reactions in a temperature-range of 350°C - 740°C.

- Experimental results for the two reformers are close to each other.

- The developed kinetic expression of Arrhenius type (second order with respect to mole fraction of methane and first order with respect to mole fraction of water) gives a good agreement with the experimental results.

- This kinetic expression ($\alpha = 2; \beta = 1$) is universally applicable for different steam to carbon ratios and also for the case of anode off-gas recycling (AOGR).

- In the case of anode off-gas recycling the reaction rate constant is larger than that without AOGR.

- Understanding of the methane steam reforming reactions is expected to be of significant importance for the further development of SOFC systems.
Acknowledgement goes to all staff members of JÜLICH for their excellent work and to the Helmholtz Society for financing these activities.

Thank you for your attention!