Peculiar physical properties and material synthesis by self-organization: New Hydrogen Storage Material

- **Department of Physics, Osaka University**
 - T. Takami and K. Kawamura

Outline

- 1. Introduction & Motivation; self-organization
- 2. New material with a one-dimensional space structure
- 3. Hydrogen uptake and release
- 4. Mechanism of hydrogen storage

Ideal energy source

- inexhaustible
- No emission of CO₂

Conventional Hydrogen Storage Materials

- Hydrogen Adsorbing Alloys (LaNi₅, TiFe, ···)
- Porous Materials (Carbon, MOFs, …)

(Problem)

- ♦ Heavy weight, rare metal
- ◆Small adsorption amount at room temperature
- ◆Irreversibility of adsorption/desorption
- ◆ Exothermic upon adsorption

Motivation

We develop new hydrogen adsorbing material to overcome above problems.

— 🔷 New material 💳

Single-crystal X-ray analysis

Empirical formula	$C_{12}H_{12}CuN_2O_4$			
Formula weight	311.78			
Temperature (K)	200			
Wave length (Å)	0.71075			
Crystal system	orthorhombic (Pnma, No.62)			
a (Å)	9.7182			
b (Å)	14.3322			
c (Å)	10.3144			
Crystal size (mm ³)	0.19 × 0.16 × 0.14			
Crystal color	blue			
Reflections measured	13357			
Refinement method	Full-matrix least-squares on F2			
Goodness of fit on F2	1.17			
R1 (Final R index)	0.0401			
R index (All data)	0.0430			
wR	0.1015			

X-ray diffraction

2.6 wt% hydrogen is **rapidly** adsorbed in the single-crystal material at room temperature.

▲ Metal-Organic Frameworks

N. L. Rosi *et al.*, Science **300**, 1127 (2003).

=== 🗬 Hydrogen uptake and release ==

—— 🔷 DSC under high pressure

As hydrogen pressure was increased, an exothermic peak was observed; this trend is characteristic of hydrogen adsorption.

Grand Canonical Monte Carlo method

Q: Is hydrogen adsorbed as H atoms or H₂ molecules?

A: H atoms.

Q: Which structure of adsorbed hydrogen is energetically stable?

A: Organic linkers are preferential adsorption sites and the organic unit is a key to achieving good adsorption capacity.

Materials	Carbon system	MOFs	Metal Hydrides		Complex Metal Hydrides
Advantage	reversible	reversible	reversible		High H density
Disadvantage	Too cold	Too cold	Too heavy and expensive		irreversible
Physisorption 0.76		Chemisorption		Quasi-molecular bonding	
> 3.0 A	H ₂	H	H	~2.5	-2.5 A

P. Jena, J. Phys. Chem. Lett. **2**, 206 (2011).

We reported the synthesis and characterization of the $C_{12}H_{12}CuN_2O_4$ single crystal whose structure, operating capacity, and physical mechanism contrast with existing MOFs.

- Structure • 1D void space
- Operating capacity - 2.6 wt%, 3.8 wt%
- Mechanism - Hydrogen is adsorbed as atoms.

- <u>T. Takami</u> and K. Kawamura, APL Mater. **2**, 096104 (2014).
- PCT/JP2015/63176

Problems

- × Heavy weight, rare metal
- × Small adsorption amount at room temperature
- × Irreversibility of adsorption/desorption
- × Exothermic upon adsorption/desorption

- × Heavy weight, rare metal
 - ⇒ light element, element with the large Clarke number
- × Small adsorption amount at room temperature
 - ⇒ 2.3 times larger adsorption amount (World record among MOFs)
- × Irreversibility of adsorption/desorption
 - ⇒ reversibility due to a specific mechanism
- × Exothermic upon adsorption/desorption
 - \Rightarrow \bigcirc small exothermic (\ll 10 kJ/mol)

Applications

▲FCV

70 MPa 122 L 100 kg

91% **Down**

28% **Down** 3.8 wt% **6.5 MPa** 88 L 127 kg

Future(5.0 wt%) 6.5 MPa 66 L

95 kg

Functional Cobalt Oxides fundamentals, properties, and applications Tsuyoshi Takami

Advertisement

Key Features

- Covers widely functional cobalt oxides from basics to application, including recent progress focusing on their functionality and physics behind their peculiar physical properties
- Offers numerous cobalt oxide materials, functionalities, and applications, uniquely observed for cobalt oxides among many transition metal oxides
- Includes three major topics—fundamentals, properties, and applications—with their essence and mechanism by applying suitable theories

Chapter	Title	Author(s)
1	Introduction	Tsuyoshi Takami
2	Spin-State Crossover	Tsuyoshi Takami
3	Li Ion Battery	Tsuyoshi Takami
4	Huge Thermoelectric Power	Tsuyoshi Takami
5	Room-Temperature Ferromagnetism	Tsuyoshi Takami
6	Partially Disordered Antiferromagnetic Transition	Tsuyoshi Takami
7	Superconductivity	Tsuyoshi Takami
8	Transport Properties Combined with Charge, Spin, and	Tsuyoshi Takami
	Orbital: Magnetoresistance and Spin Blockade	
9	Intrinsic Inhomogeneity	Tsuyoshi Takami
10	Move/Diffuse and Charge/Discharge Effect	Tsuyoshi Takami

FIN.