“An Old Argument with a New Paradigm”

2-Methoxyestradiol a Specific Pharmacological Inhibitor for the Angiotensin Type 1 Receptor and Hypertension

Thomas J. Thekkumkara, Ph.D.
Professor and Chair Department of Biomedical Sciences
Regional Dean
Texas Tech University Health Sciences Center School of Pharmacy
Amarillo, Texas 79106, U.S.A
The study shows 2ME2 reduces blood pressure possibly by AT1R down-regulation through a G-protein coupled receptor (GPR30) tethering with epidermal growth factor receptor (EGFR) induced MAP-Kinase pathway.
Hypertension Facts

According to the AHA estimates:

- About 76.4 million people in the United States age 20 and older have high blood pressure.
- Nearly one in three U.S. adults has hypertension, but because there are no symptoms, nearly one-third of these people don't know they have it.

Hypertension is called the "silent killer."

You can’t feel it or see it, however

"you cannot afford to ignore it"
Health Consequences of Hypertension
Men Vs. Women with Hypertension

Compare a 50 year-old individual of normal body mass with normal blood pressure (120/80) to high blood pressure (146/86) has:

<table>
<thead>
<tr>
<th>Diseases</th>
<th>Risk of Dying</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For Men</td>
</tr>
<tr>
<td>Heart attack</td>
<td>3X</td>
</tr>
<tr>
<td>Heart failure</td>
<td>2X</td>
</tr>
<tr>
<td>Stroke</td>
<td>4X</td>
</tr>
<tr>
<td>Kidney Disease</td>
<td>3X</td>
</tr>
</tbody>
</table>
Cardioprotective Effects of Estrogen

Premenopausal women have shown reduced risk for cardiovascular diseases compared to men of similar age

- Increases insulin sensitivity in resistant individuals
- Inhibits cholesterol deposition and LDL oxidation
- Increases HDL levels
- Anti-oxidant properties

Adverse Effects of Estrogen

Heart and Estrogen/progestin Replacement Study (HERS)

- Risk of coronary heart disease (CHD)
 - Atherosclerosis
 - Heart Attack
 - Cardiac Arrest

- Increased risk of stroke and blood clots

- Increases breast cancer incidence, lung and uterine cancer

- Thromboembolism and gall bladder disease

- Women’s Health Initiative-NCI Cancer Bulletin, April 2011 edition
Blood Pressure Reduction

- **Dietary and lifestyle changes**
 - Eat more fruits, vegetables & low-fat dairy products
 - Physical Activity, lose weight, drink less alcohol
- **Antihypertensive drug therapy**
 - Vasodilators, Sympathetic nerve inhibitors, ACE inhibitors, Angiotensin Receptor blockers, Diuretics, Calcium channel blockers
Control of AngII Actions (Drug Targets)

- **Angiotensinogen**
 - **Renin**
 - **ACE**

- **Angiotensin I**
 - **ACE**

- **Angiotensin II**

Current Drugs
- **ACE inhibitors** (Captopril, Enalapril, Ramipril)
- **ARBs** (Candesartan, Losartan, Valsartan)

Current Drug
- **Renin inhibitor** (Aliskiren)

Disease Target

Angiotensin Type 1 Receptor

RECEPTOR mRNA

RECEPTOR GENE
Metabolism of Estradiol to 2-Methoxyestradiol

Hypothesis

Cardioprotective effects of estrogen are primarily due to its metabolite 2-Methoxyestradiol (2ME2) mediated down-regulation of angiotensin type 1 receptor (AT1R) expression.
2ME2 Inhibits AT1R Specific Binding

Data are expressed as mean ± SEM (N=3). ***P<0.0001 versus untreated control.

Koganti, et al. Gender Medicine, 2012
2ME2 Significantly Inhibited AngII Mediated Increase in Intracellular Calcium

Before AngII Treatment

After AngII Treatment

Before 2ME2

Representative images, N=3

After 2ME2

Representative tracings, N=3

Koganti, et al. Gender Medicine, 2012
2ME2 inhibition of AngII mediated increase in Intracellular Calcium is MAP Kinase mediated

Data are expressed as mean±SEM (N=3). ***P<0.001 compared to control.

Koganti, et al. Gender Medicine, 2012
GPR30 Agonist G1 or Antagonist G15 Displaces $[^3H]2$ME2 Specific Binding

Data are expressed as mean±SEM (N=3).

**P=0.0003 versus total binding.

***P=0.002 versus total binding.

G1 Formula $\text{C}_{21}\text{H}_{18}\text{BrNO}_3$

G15 Formula $\text{C}_{19}\text{H}_{16}\text{BrNO}_2$

GPR30 Agonist G1 Down-regulates AT1R Specific Binding Independent of 2ME2

Data are expressed as mean ± SEM (N=3). ***p<0.0001 versus total untreated control.

EGFR inhibitor Reverses 2ME2 Response

2ME2 = 1µM
EGF Inhibitor AG1478 = 10nM

Data are expressed as mean± SEM (N=3). P<0.001

2ME2 mediated inhibition of AT1R expression is Matrix Metalloproteinase Dependent

![Graph showing inhibition of AngII binding with 2ME2 and MMP inhibitor-GM6001](image)

Data are expressed as mean± SEM (N=3). ***P=0.001, **P=0.6423
Proposed Mechanism(s) of 2ME2 Actions
Animal Study (*in vivo* validation)

- Spontaneously Hypertensive Rats
- Male, 14 week, 290-320 grams
- 12 hour day/night cycle
- Weight taken every other day
- 10mg/kg 2ME2 delivered IP (every day in the evening)
- Study performed for 3 weeks
- Blood Pressure measured (every other day in the morning)
- At the end of the study renal cortex isolated for analysis
2ME2 Reduces Systolic Blood Pressure in SHR

Data are expressed as mean ± SEM (N=4). *** P<0.0001.
2ME2 Reduces Diastolic Blood Pressure in SHR

Data are expressed as mean ± SEM (N=4). *** P<0.0001.
2ME2 Reduces Mean Arterial Pressure in SHR

Data are expressed as mean ± SEM (N=4). *** P<0.0001.
2ME2 Treatment Down-Regulates AT1R Protein and mRNA in Renal Cortex of SHR

Data are expressed as mean ± SEM (N=4).
*** P<0.0001 versus control group.

Data are expressed as mean ± SEM (N=4).
*** P=0.0007 versus control group.
2ME2 Reduces Body Weight of SHR

Data are expressed as mean ± SEM (N=4). ***P<0.0001 versus control group.
Summary

1. In Cells 2ME2 down-regulates AT1R expression in a dose and time dependent manner
2. AT1R down-regulation lead to decrease in AngII mediated release in intracellular Calcium levels
3. 2ME2 mediated down-regulation of AT1R is GPR30 and MAP-Kinase(ERK 1/2) dependent
4. GRP30 induced down-regulation of AT1R is MMP and EGFR dependent
5. 2ME2 significantly reduced the blood pressure in SHR

2ME2 mediated changes in AT1R expression may provide beneficial effects to cardiovascular disorders such as hypertension
Acknowledgements

Lab Members:
- Russell Snyder, Ph.D.
- Upendra Gumaste, Ph.D.
- Sivaramakrishna Koganti, Ph.D.
- Benard Ogola - Graduate Student
- Laxmi Iyer - Graduate Student

Collaborators:
- Vardan Karamyan, Ph.D.
- Thomas Abbruscato, Ph.D.

Funding:
- National Institutes of Health-DK072140
- TTUHSC SOP Graduate Fellowships
- TTUHSC Office of Research Grant