Biosimilar Regulation in the ASEAN

Shivraj Dasari, Ph.D.,
Managing Director,
SLS Cell Cure Technologies Private Limited,
Flat#103, Prabhat Apartments, Street No.11, East Marredpally,
Secunderabad – 500026, Tel/Fax: +91-40-27734415,
www.slscellcure.in Email: drshivraj@slscellcure.in
Contents

- Introduction
- Biosimilars regulation - Basis
- Biosimilar Regulations - ASEAN
- Perspectives
- Challenges
About Us
Business Streams

Unique Offerings

Phase – I
Molecular Diagnostics
• Infectious Disease screening
• Predictive Diagnostics
• Pharmaco-genomics.

Phase – II
Cell Therapies
• Autologous Fibroblast therapy.
• BM derived MSC's
• Cord Blood Derived MSC’s
• Peripheral Blood Derived MSC’s
• Allogenic Therapies

Dr. Shivraj Dasari
Molecular diagnostics is transforming medicine. It is a >$5 billion market worldwide and growing at >24% annually.

Key questions:

- “Is the baby healthy?”
- “Which diseases is this patient at risk for?”
- “Does this patient have disease?”
- “What drugs should I prescribe?”
- “How the disease relapsed?”

Pre-natal testing, disease predisposition, disease detection, drug selection, recurrence monitoring, need for molecular tests.

Dr. Shivraj Dasari
Introduction
The expiring patents of blockbuster biologics - creating huge opportunities for biosimilars

Of the $60 billion in global revenues from biologics that will lose patent protection by 2015, $17 billion are major blockbusters.

Dr. Shivraj Dasari
Biosimilars – Basis of Regulation
Four Things to consider about Biologics

1. Molecular Properties
2. Manufacturing Process
3. Safety
4. Efficacy
Example: Interferon beta vs Aspirin

Interferon Beta
MW 19'000D

Aspirin:
MW 180D

Source: Fraunhofer IGB (Interferon Beta)
Molecular Properties

• Biotech Products are more complex than small molecules

• Large molecules, typically 100 to 1000 times larger than a conventional small molecule drug.

• Posses a fragile 3-dimensional structure.

• Not ‘pure’ homogeneous molecules.
Drug Development Process
Paradigm shift for Biologics

Discovery Phase
(3-6 years)
- Basic Research
- Full Discovery

Development Phase
(5-10 years)
- Early Stage Development
- Late Stage - Full Development

Commercialization Phase
(8-12 years - Patent Expiration)
- Manufacturing
- Sales Distribution
- Product Management

Preclinical Testing
(lab & animal testing)

Phase I Clinical Trial

Phase IIa, IIb Clinical Trial

Phase III Clinical Trial

Generics Biosimilars

Drug Development Outsourcing to CROs, CMOs

Biologics

Process Tech Transfer earlier

Manufacturing Outsourcing to External Facilities
Biosimilars, Bio-generics, follow-on Biologics, Development & Commercialization

Molecular Biology Cell Line & Process Development
Preclinical & Clinical Development
Filing, Regulatory Review & Approval
Launch & Commercialization

2-3 years 3-4 years 1-2 years

Full Drug Development Capabilities and Infrastructure Required
- CMC: Process development & biologics Manufacturing
- Preclinical and Clinical: Toxicity, Phases 1 and III, comparability studies
- Filing and regulatory challenges

High Barriers to Entry
- $50M – $500M long term investment required
- Competition with existing brands (low price differentials)
- Complexity of products (not API) and manufacturing facilities

Highly Competitive Markets
- Large pharmaceutical companies moved in: Merck, Novartis, Aztrazeneca
- Major generics companies formed alliance: Teva & Lonza
Integrate Process Development with Manufacturing

New cell line?
- Biologics Process Research <10L
 - New cell line development
 - Expression engineering
 - Media design
 - Novel product

Process changes?
- Process Devt & Medium Scale production 10L-500L
 - Process development, optimisation, scale-up
 - Productivity enhancement
 - QbD, PAT implementation
 - Product quality & stability

Formulation changes?
- Commercial scale production 2000L – 20,000L
 - Process scale up
 - DS Manufacturing facility operations
 - COGS improvement
 - Lean manufacturing

Fill & Finish
- Vial filling, packing
- Lyophilization
- Supply chain operations
- COGS improvement
 - Lean manufacturing

FUNCTIONAL EXCELLENCE
ONE CMC TEAM

CELL CULTURE
- Molecular Biologist
- Microbiologists
- Cell Biologists
- Virologists

ANALYTICS
- Analytical Biochemists
- Biophysical Chemists
- Protein Biochemists

PURIFICATION
- Chromatographers
- Protein Biochemists
- Biochemical Engineers

FORMULATION
- Formulation chemists
- Protein Biochemists
- Engineers
How are Biopharmaceuticals manufactured?

• Develop host cell: DNA sequence for protein, select vector to carry the gene, insert this into genome of host (microbial or mammalian cell)
• Establish a cell bank (cell screening and yields)
• Protein production (in spinner flasks and bioreactors)
• Purification (remove endotoxins, viruses, other proteins)
• Analysis (3D structure, aggregation, isoform profile: the way glycosylation is performed, heterogeneity, potency); cannot be fully characterized (not able to detect all characteristics that may affect clinical efficacy and safety)
• Formulation (eg. add stabilizer, HSA or polysorbate)
• Storage and handling (eg. Do not shake, cold chain)

Each of these stages can have a major influence on the characteristics of the end product
Persue Revolutionary technologies to reduce COGS

TREND:
Higher cell productivity and process optimization result in smaller and less complex manufacturing facilities (20,000L vs. 2,000L)

High Cell Productivity

Process Simplification
- Current mAb platform improvement: Higher capacity resins, One column process, No Protein A
- Chromatography Alternatives
 - Crystallization, Ppt, Q filters
- Chemical Process like - Continuous Processing
- Automated sampling and monitoring with new sensors
- Equipment with Integrated instrumentation for real time control and release

Facility Efficiencies
- Using disposable systems reduces SIP and CIP requirements
- Reduction of Process Equipment Size
- Process and facility modularization reduces construction time
- Moving of process equipment into gray space reduces cleanroom space

“The Progress of Biotechnology manufacturing and Process Sciences”
Patrick Yang, Genentech, Inc., Nov. 5, 2007, APBioCheDSC, Taiwan.
Early use of QbD & PAT – Knowledge based Process Strategy

Traditional Approach (fixed controls)
- Variability in raw materials, conditions
- Characterization range
 - Acceptable range
 - Operating range
- Failures; variation detected late
 - High variability in product; Possible recalls; Product safety concerns

Dynamic Control Strategy (multidimensional)
- Variability in raw materials, conditions
- Characterized Space
 - Design Space
 - Adaptive Control Space
 - Acceptable Operating Space
- PAT
 - Rapid correction of process parameters
- Product consistency; Lower failures
Major Process Challenges

- **Sterile vs. Aseptic**
 - Requires the application of microbiological contamination control to prevent infectious organisms to be present in the sterile product

- **Demonstrate “CONTROL” of the process, while technical complexity increases**
 - Characterization to identify variability components
 - Application of science and new technologies

- **Maintenance of the cell lines**
 - Contamination risks

- **Personnel as “incubators”**
 - Source of microbial load
<table>
<thead>
<tr>
<th>Poorly characterized</th>
<th>Well-characterized</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Traditional vaccines</td>
<td>• Natural proteins</td>
</tr>
<tr>
<td>• Whole blood</td>
<td>• rDNA-derived proteins</td>
</tr>
<tr>
<td>• Blood derivatives</td>
<td>• Monoclonal antibodies</td>
</tr>
<tr>
<td>• Blood components</td>
<td>• rDNA-derived vaccines</td>
</tr>
<tr>
<td>• Allergenic extracts</td>
<td></td>
</tr>
<tr>
<td>• Stem cells</td>
<td></td>
</tr>
<tr>
<td>• Somatic cell and gene therapeutics</td>
<td></td>
</tr>
<tr>
<td>• Toxins</td>
<td></td>
</tr>
</tbody>
</table>
Biotech medicines do not contain a single active ingredient, they are a heterogeneous mix of different isoforms.
What looks almost same, may be different!

IEF pattern and sialic acid content of the two EPOs are very similar

... but the biological activity is very different

<table>
<thead>
<tr>
<th>Sialic acid</th>
<th>14.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-vivo activity (U/mg)</td>
<td>226,000</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
</tr>
</tbody>
</table>

The carbohydrate structures of the two EPO isoforms are different

Adapted from Kresse (Burg, J. et al. 1998 PCT/EP/98/07876)
Immunogenicity: impact on efficacy and safety

• If a Biological product is injected which is not the natural protein - immune system starts working to attack the foreign protein. This immune response can vary from no perceptible effect to significant clinical effects:
 - Generalized immune effects (allergy, anaphylaxis)
 - Neutralization of exogenous protein (loss or enhancement of drug efficacy)
 - Neutralization of the endogenous protein (serious adverse event)

• Factors influencing immunogenicity:
 - Amino-acid sequence, glycosylation, host cell impurities, formulation, handling/storage (aggregate formation)
 - Route of administration SC>IM>IV, concomitant disease, genetic factors.

Dr. Shivraj Dasari
• Biosimilars cannot be assumed to have the same immunogenicity profile as the original product.
• Because immunogenicity is largely unpredictable, the assessment of a biosimilar must be based on:
 - a thorough risk-benefit analysis
 - Robust post-marketing risk management programmes
• Physicians and hospital pharmacists should remain alert to unexplained changes in drug efficacy or side effects.
Comparability Concept for Biosimilars/Follow-ons

Quality comparability data

- New Drugs
- Biosimilars

% Relative data

Dr. Shivraj Dasari

Dr.SLS Cell Cure Technologies: Production, Dispersants & Cell Therapies
Differences of Biosimilar/ Follow-on Products

Known, detectable differences
- Genetic construct and cell line
- Cell culture/fermentation conditions
- Purification process and in-process controls
- Characterization test and specifications
- Micro heterogeneity for glycoforms
- Impurities and variants

Unknown, hard-to-detect differences
- Biological activities
- Structural/conformation
- Immunogenicity
- Efficacy/safety
Goals of Quality, Non-clinical, and Clinical Studies

Quality

- To demonstrate comparability of the product to a reference product - the most critical step.

Pre-clinical toxicology

- To confirm therapeutic index and safety profile.
- To qualify impurities by short-term animal studies.
- Full animal toxicity studies are not necessary.

Non-clinical PK/PD studies

- To confirm dosing regimen by PK profiles.
- To confirm the mechanism of actions by biomarkers (PD).

Clinical safety

- To compare immunogenicity and/or hypersensitivity with the reference products

Efficacy

- To conduct confirmatory clinical trials (smaller scale).
- Use of complementary biomarkers, or surrogate endpoints.
Major Challenges by Companies from Asia

- Regulatory requirements and patent issues.
- Cell line and process for manufacturing of products meeting comparability criteria.
- Capacity of manufacturing and compliance with internationally recognized GMP standards.
- Comparability issues after changes in site and scale.
- Product-specific issues on comparability testing.
- Ability to secure reference products for comparability testing including pre-clinical and clinical studies.
- Design of non-clinical and clinical studies that meet regulatory requirements.
- Development costs and competitions from 2nd generation products and bio-betters.
Comparability Paradigm – Innovator Product

Preclinical safety

Clinical safety

Clinical Efficacy

COMPARABILITY STUDIES

Preclinical Product Lots

Phase 1 / 2 Product Lots

Phase 3 / Commercial Scale Product Lots
Comparability Paradigm – Follow On Biologic (Biosimilar)

Preclinical Safety

Clinical Safety

Clinical Efficacy

Comparability Studies

Preclinical Product Lots

Phase 1 / 2 Product Lots

Phase 3 / Commercial Scale Product Lots

Ref Drug

Ref Drug

Ref Drug

Dr. Shivraj Dasari
Outstanding issues

Pharmaco vigilance systems:

This is not an issue unique to biosimilars existing issue that is highlighted and exaggerated by their arrival

Eprex® → Biosimilar EPO α (1) → Biosimilar EPO α (2) → Adverse Event

Ensure traceability

Company and Regulatory Agency AE reporting systems should distinguish one manufacturer's product from another
- Complex, if biosimilars have the same INN as the innovator
- AE reports are often incomplete e.g. lot number

Prevent repeated, uncontrolled substitution

Repeated, uncontrolled substitution will confound accurate pharmacovigilance
- Occasional changes are inevitable or necessary in chronic therapy
Substitution does not apply to Biosimilars

Medicines are the same = therefore can be safely substituted

- ✔ Generics / chemical drugs

Substances are identical = therefore can be substituted

- ✗ Biosimilars/Biotech medicines are not identical

Can generic substitution rules be applied?

Therefore, with biotech medicines and biosimilars, the generic substitution rules do not apply
Creative supply Chain strategies ensures success

Worldwide sales of vaccines predicted to rise to $35 billion by 2014

Huge growth of temperature sensitive vaccines is driving the development of novel technologies for transportation and logistics such as thermo stable vaccines, solar “battery free” refrigerators, “zero energy” cold chain electric vehicles and longer-term passive storage containers.

Development of sub-sectors such as biotech, medical devices, clinical trials and diagnostics are fuelled by high levels of innovation, leading to individual customer-centric solutions

India, with $2.36 bill. in biopharma market is set to become one of top 5 producers of biopharmaceuticals in the world by 2020.

Dr. Shivraj Dasari
Comparability with the reference product must be ensured at all levels.

- Clinical efficacy and safety
- PK/PD
- Preclinical
- Biological characterization
- Physicochemical characterization

"The Comparability Exercise"

Complete, independent product and process development according to QbD
Biosimilar Regulation - ASEAN
ASEAN – Association of Southeast Asian Nations
- 10 member countries
• Indonesia, Malaysia, Philippines, Singapore and Thailand (1967)
• Brunei Darussalam (1984)
• Vietnam (1995)
• Lao PDR and Myanmar (1997)
• Cambodia (1999)
Strengthening Regional Regulatory Frameworks through Partnership

Dr. Shivraj Dasari
Facts

- As of 2006, ASEAN region has a population of about 560 million
- Total area of 4.5 million square kilometers
- Combined gross domestic product almost US$ 1,100 billion
- Total trade of about US$ 1,400 billion
Harmonization Milestones

1999
PPWG

2002
IWG

2005
GMP MRA TF

2006
BA/BE TF

2009
ACTD Implementation

✓ ACTD development
✓ ACTR & technical guidelines development
✓ Regulatory capacity building
✓ Post-Market Alert System development
✓ GMP Inspection MRA development
✓ Training scheme development

✓ ACTD implemented
✓ ACTR & technical guidelines established (maintenance and enhancement of common interpretation ongoing)
✓ Post-Market Alert System established
GMP Inspection MRA finalized
Training identified
Pan-ASEAN registration
Background

- **1992:**
 - The ASEAN Consultative Committee for Standards and Quality (ACCSQ) formed to facilitate and complement the ASEAN Free Trade Area (AFTA).

- **1997**
 - ASEAN regulatory bodies authorized to achieve mandate of eliminating technical barriers to trade.

- **1998**
 - Efforts to harmonize regulatory requirements amongst ASEAN was initiated through the (ACCSQ).

- **1999**
 - Concept of ASEAN pharmaceutical harmonization was presented by Malaysia and agreed upon by the Senior Economic Officials Meeting (SEOM).
1992 AEM → ACCSQ → Working Groups (WGs) → Product Working Groups (PWGs)

1998 ACCSQ → initiated the PPWG
1999 ACCSQ → endorsed the PPWG

The Pharmaceutical Product Working Group (PPWG) was formed in 1999
- Malaysia hosted the 1st PPWG meeting and was appointed the Chair and Thailand the Co-Chair.
Strategies

- Comparative study on existing product registration requirements and regulations for pharmaceuticals
- Identification of key areas on requirements for harmonization
- Development of common technical requirements (CTR) for pharmaceutical product registration
- Development of common technical dossier (CTD) towards MRA
- Implementation of harmonized ASEAN Pharmaceutical Product Dossier by December 2008
Technical Cooperation

- ACTR/ACTD
 - Quality – Indonesia
 - Safety – Philippines
 - Efficacy – Thailand
 - Administrative Data, Product Information and Glossary – Malaysia

- Guidelines
 - Analytical Validation – Thailand
 - Process Validation - Singapore
 - Stability Studies – Indonesia
 - BA/BE Studies - Malaysia
ASEAN Harmonized Product

- ASEAN Common Technical Requirements and Dossier (ACTR/ACTD) on Quality, Safety and Efficacy plus Administrative Data and Glossary

- Guidelines on
 - Analytical and Process Validation
 - Stability Studies
 - Bioavailability/Bioequivalence
Impact of Harmonization

- Public Health - Improve Quality, Safety & Efficacy
- Patients & Consumers - Improve access & availability
- Industry - Improve compliance to GMP, GSP, GCP, GLP
- Regulatory - Confidence building & Mutual understanding
ACTR
A set of Written Materials intended to guide applicants to prepare application dossiers in a way that is consistent with the expectations of all ASEAN Drug Regulatory Authorities

ACTD
The part of marketing authorization application dossier that is common to all ASEAN member countries
Content of ACTR - Quality

Drug Substance
- General info.
- Characterisation
- Ref. Std. or Materials
- Stability
- Manufacture
- Control of Drug Substance
- Container Closure System

Drug Product
- Description and Composition
- Manufacture
- Control of Finished Product
- Container Closure System
- Product Interchangeability/Equivalence evidence
- Pharmaceutical Dev.
- Control of Excipients
- Ref. Std. or Material
- Stability

Dr. Shivraj Dasari
Contents of ACTR - Safety

Pharmacology
- Primary P’dynamics
- Safety P’cology
- Secondary P’dynamics
- Drug Interaction

Toxicology
- Single Dose Toxicity
- Genotoxicity
- Reproductive & Development Toxicity
- Repeat Dose Toxicity
- Carcinogenicity

Pharmacokinetics
Local Tolerance
Other Toxicity Studies
List of Key Literature Ref.

Dr. Shivraj Dasari
Contents of ACTR – Clinical Data

• BA & BE Studies
• Studies pertinent to P’cokinetics
• Human P’cokinetic studies
• Human P’codynamic studies
• Efficacy and safety
• Post marketing data (if available)
• References
Adopted the WHO’s Guidelines

Adopted the existing International Pharmacopoeia

Adopted ICH-Quality Guideline (12GL’s)

Drafted 4 ASEAN Quality GL’s
- Analytical Validation guideline
- BA/BE studies guideline
- Process Validation guideline
- Stability studies guideline
Technical guidelines to ACTR

Safety
- adopted 15 ICH – safety guidelines

Efficacy
- adopted as Ref.Guidelines. 4 ICH – Efficacy Guidelines (E2C(A), E2D, E2E, E12A)
- not adopted 2ICH – Efficacy Guidelines (E2B(M), E5)
Contents of ACTD

- Section A: Introduction
- Section B: Overall ACTD-ToC
- Section C: Doc. reqd for Registration

Part 2: Quality Document
- Section A: ToC
- Section B: Quality Overall Summary
- Section C: Body of Data

Part 3: Non-clinical / Safety Doc
- Section A: ToC
- Section B: Non-clinical Overview
- Section C: Non-clinical Written & Tabulated Summaries
- Section D: Non-clinical Study Reports*

Part 4: Clinical / Efficacy Doc
- Section A: ToC
- Section B: Clinical Overview
- Section C: Clinical Summaries
- Section D: Tabular Listing of All Clinical Studies
- Section E: Clinical Study Reports*
- Section F: List of Key Literature References

Note:
ToC = Table of Content
* = Upon REQUEST
Main differences are the organization of data and the numbering of sections.

Implementation of A-CTD in the ASEAN region is planned on 31 Dec 2008.
Current Status

<table>
<thead>
<tr>
<th>Country</th>
<th>Full Implementation Date</th>
<th>Products (country info)</th>
<th>Current situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINGAPOUR*</td>
<td>31 Dec 2005</td>
<td>Pharma / Bio</td>
<td>Full implementation</td>
</tr>
<tr>
<td>MALAYSIA*</td>
<td>31 Dec 2005</td>
<td>Pharma</td>
<td>Full implementation</td>
</tr>
<tr>
<td>INDONESIA*</td>
<td>1 Jan 2008</td>
<td>Pharma</td>
<td>Draft ACTD</td>
</tr>
<tr>
<td>VIETNAM</td>
<td>31 Dec 2007</td>
<td>Pharma</td>
<td>Draft ACTD currently in review</td>
</tr>
<tr>
<td>THAILAND*</td>
<td>31 Dec 2007</td>
<td>Pharma / Bio</td>
<td>ACTD for biologicals currently in review</td>
</tr>
<tr>
<td>CAMBODIA</td>
<td>31 Dec 2008</td>
<td>-</td>
<td>Initiated the implementation of part I</td>
</tr>
<tr>
<td>LAO PDR</td>
<td>31 Dec 2008</td>
<td>-</td>
<td>Initiated the implementation of parts I and II</td>
</tr>
<tr>
<td>MYANMAR</td>
<td>-</td>
<td>-</td>
<td>Plans to implement are underway</td>
</tr>
<tr>
<td>PHILIPPINES*</td>
<td>31 Dec 2008</td>
<td>Pharma</td>
<td>Initiated in Jan 2005</td>
</tr>
<tr>
<td>BRUNEI</td>
<td>31 Dec 2008</td>
<td>-</td>
<td>Parts I & II implemented</td>
</tr>
</tbody>
</table>
Implementation of ACTD

Full implementation after 31st Dec 2008

- 12th ACCSQ PPWG meeting: ICH format is still acceptable after 1st Jan 2009.

Flexibility to use ICH-CTD format for:

- Innovative therapeutic products (NCE)
- Biological & biotechnical products -> vaccines.
How is it going to work?

Questions (raised by DRA & industries) and experts inputs from MC

Compilation of questions, inputs from member countries by lead countries

The lead country will draft the incoming Q&A based on countries input and discussion with experts

Discuss in technical meeting of ACCSQ PPWG with all member's countries experts

Agreeable Q&A booklet

Adoption of booklet
Additional requirements for ASEAN countries - Singapore

Special Documents requested:

• Appendix 8 : Singapore QOS for Biologic
• Validation sheet
• Singapore Stability Sheet

Stability requirements different from ICH, valid for NCE’s (not for NBE’s):

• Long term testing:
 - Products packed in semi-permeable containers: $30^\circ C + 2^\circ C/75\% \text{RH} + 5\% \text{RH} - \text{min.12 months.}$
 - $30^\circ C \pm 2^\circ C$, humidity not specified (for products in impermeable containers), 12 months

• Accelerated studies: $40^\circ C \pm 2^\circ C/75\% \text{RH} \pm 5\% \text{RH} - \text{min 6 months}$

• Stress studies : $40^\circ C \pm 2^\circ C/75\% \text{RH} \pm 5\% \text{RH}$.
Stability requirements different from ICH:

• 30° C + 2°C / 75% RH + 5% RH – 0,3,6,9,12,18,24 months
• 40°C + 2°C / 75% RH + 5% RH – 0,3,6,months
• Reviewed by 14th ACCSQ-PWG in Feb 2008.
• Full implementation planned for January 1st 2009.
• No transition period foreseen
• Requested for all products (also retrospectively)
CONCEPT OF AN MRA

Definition
• Theoretically an MRA is a treaty signed between Governments of all Member Countries.

Objective
• To implement a harmonized pharmaceutical regulatory scheme.
• For the products subjected to product registration approval, the sectoral MRA would allow them to be marketed in the other ASEAN countries if the product have been registered accordingly in one ASEAN country.
Each National Drug Regulatory Authority (NDRA) proposes an Inspection Service, which is responsible for:

• Inspecting manufacturers of medicinal products
• Issuing a GMP inspection report

This GMP inspection report can be requested by other NDRAs and ne mutually recognized in the ASEAN countries.
Benefits

• Avoidance of duplication of GMP audits among ASEAN Member Countries
• Savings on time, resources and cost for both regulators and industry
• Facilitation of trade and export
• Quicker access of medicinal products to patients across ASEAN

Signed during the 13th PPWG Meeting in April 2008.
Lead Countries: Singapore & Malaysia

Objective

- Share information relating to defective or unsafe product/pharmaceutical product
- Major safety concerns can be acted upon in timely manner

In the event of a major safety concern that results in a recall or withdrawal, the PMA system can be used to notify the various regulatory agencies in a timely manner.

- A Singapore PMAS pilot scheme was launched in April 2005
- ASEAN PMA system adopted in Feb 2006 by all the ASEAN members.
A PMAS coordinator is named in each Member Country (MC)

He is responsible for
- Validating the information
- Sending an alert notification to other member countries (Standardized ASEAN reporting form)

A MC receiving the alert may then wish to follow up the original MC for further information, clarification or necessary regulatory action on an individual basis.
Perspectives
2008-2009
• 1 Dossier for the entire ASEAN region but 1 submission in each member country
• Harmonization of packaging/labeling requirements

Common Variation Guidelines
• Across the ASEAN region, changes to approved dossier are handled as a variation or a new registration.
• Need to harmonize
• Proposed basis: guidelines from Singapore or Malaysia

New ACTR and <<technical>> MRA to harmonize the ASEAN region?
Mid and long term perspectives

2008-2012: Pan ASEAN Registration

• MRA for Product Registration
• Allow products tested and assessed in 1 ASEAN country to be marketed in other ASEAN countries, without repeating the testing and certification processes
• Quicker product registration & improve intra ASEAN trade

• Post 2012: Towards a centralized and decentralized procedures
Challenges
Greatest Challenges

• Gaps in the training and level of expertise between developed countries and developing ones
• Lack of competency for regulatory officials as well as for regulatory personnel of the pharmaceutical companies (especially on vaccines, Biopharmaceuticals)
• Different approaches and understanding of concepts among national authorities
• ACCSQ is developing a <<mechanism to monitor the Implementation of ASEAN policy guideline>>

Dr. Shivraj Dasari
Thank you
Thank You!

SLS Cell Cure Technologies Pvt.Ltd.,
Flat-103, Prabhat Apartments. East Marredpally,
Secunderabad-500026, A.P; Tel:+91-40-27734415; Fax:+91-40-27734415.
URL:slscellcure.in. email:shivraj23@yahoo.com