Nanocages for self-triggered nuclear delivery of Doxorubicin at cancer cells

Mazzucchelli Serena
PhD

Nanomedicine Laboratory
Luigi Sacco University Hospital
Milan
Italy

Department of Biomedical and Clinical Sciences “L. Sacco”
University of Milan
Milan
Italy
Ferritin nanocages (HFn)

polymer of 24 subunits of heavy (H) or light (L) ferritin chain

H ferritin: ferroxidase activity
L ferritin: role in iron nucleation process

Physiological role of Ferritin

1) Iron storage

2) Protection against oxidative damage

Ferritin ferroxidation

\[2\text{Fe(II)} + \text{O}_2 + 4\text{H}_2\text{O} \rightarrow 2\text{Fe(OH)}_{\text{(core)}} + \text{H}_2\text{O}_2 + 4\text{H}^+ \] \hspace{1cm} (1)

\[2\text{Fe(II)} + \text{H}_2\text{O}_2 + 2\text{H}_2\text{O} \rightarrow 2\text{Fe(OH)}_{\text{(core)}} + 4\text{H}^+ \] \hspace{1cm} (2)

Fenton reaction

\[\text{Fe(II)} + \text{H}_2\text{O}_2 \rightarrow \text{Fe(III)} + \text{OH}^- + \cdot\text{OH} \] \hspace{1cm} (3)

Biochim. Biophys. Acta 2009, 1790, 589-599
Why HFn Nanocages?

1) Low immunogenicity: produced from human cDNA sequence
2) High stability in biological fluids
3) Possess an inner cavity that could be easily loaded with drugs by assembly/disassembly method
5) Possibility to overcome Multi Drug Resistance mechanisms as demonstrated with other kinds of nanoparticle (Eur. J. Pharm. Sci. 2010, 39, 152-163)
6) HFn physiological nuclear translocation in response of oxidative stress (Biochim. Biophys. Acta 2010, 1800, 793-797)
Development of HFn nanocages

Yield: 56 mg/L culture

HFn nanocage interaction with tumor cells (I)

TfR1 expression

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Log fluorescence intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>HeLa</td>
<td>97.7%</td>
</tr>
<tr>
<td>Human Fibroblasts</td>
<td>5.36%</td>
</tr>
<tr>
<td>MDA-MB-468</td>
<td>0.07%</td>
</tr>
</tbody>
</table>

HFn internalization in HeLa cells

Intracellular localization of HFn nanocages. Confocal microscopy images of HeLa cells, incubated for 15 min, 1 h or 3 h at 37°C with 0.1 mg/mL of HFn-FITC (green).

Specific recognition of tumor cells overexpressing TfR1

Bellini et al. JCR 2014, 196:184.
Lysosomal degradation doesn’t take place for HFn nanocages

Internalization route of HFn nanocages. Confocal microscopy merge images of HeLa cells, incubated for 1 h or 3 h at 37°C with 0.1 mg/mL of FITC-labelled. Different organelles were stained with early endosome marker EEA1, lysosomal protein CatD, Golgi marker GM130 and recycling endosome marker TfR antibodies and labelled with a secondary antibody (red).

Bellini et al. JCR 2014, 196:184.
Development of DOX loaded-HFn nanocages

Loading with the disassembly/reassembly method

Schematic representation of the disassembly/reassembly method used for HFn loading with fluorescent molecules or drugs, exploiting the ability of HFn to modify its quaternary structure in response to pH changes.

Number of doxorubicin molecules/nanoparticles 28.98

Kinetics of DOX release

Kinetics of release of DOX-loaded nanoparticles (HFn(DOX)) at 37 °C in phosphate buffer saline (PBS) confirm the presumed good stability of the HFn nanoformulation at physiological pH.

Evaluation of the fate of HFn shell and of relevant encapsulated molecules after internalization. Confocal microscopy merge images of HeLa cells, incubated for 4 h or 48 h at 37 °C with 0.1 mg/mL of HFn (red) loaded with FITC (green).

Good nanovector for intracellular delivery of drugs

In vitro DOX efficacy: free vs nanodrug (I)

Viability of cells treated with free DOX or HFn(DOX). Fibroblasts and HeLa cells were treated with 0.1 µM of DOX or HFn(DOX) for up to 72 h.

Cell death assay with DOX free or encapsulated in HFn shell. HeLa cells were treated with 1, 0.1 and 0.01 µM of DOX or HFn(DOX) for 3 or 24 h.

Double-strand break of DNA after DOX exposure. Confocal microscopy images of HeLa cells incubated with 1 µM or 0.1 µM DOX free or encapsulated in HFns. Quantification of fluorescence intensity due to DSB normalized with respect to cellular area ± s.e. **P<0.005.

Nanodrug increases DOX efficacy in blocking proliferation and in inducing cell death

Bellini et al. JCR 2014, 196:184.
In vitro DOX efficacy: free vs nanodrug (II)

DOX intracellular distribution after HFn-mediated internalization

Confocal microscopy images of HeLa cells incubated with 0.1 µM DOX free or encapsulated in HFn and analysis of spatial distribution. Confocal laser scanning images of HeLa cells treated with 0.1 µM DOX (DOX degradation product in green) free or encapsulated in HFn shell for 3 h or 24 h at 37 °C. Spatial analysis was performed on merged images using Image J plugin RGB profile plot.

Quantification of total fluorescence intensity per cell. Reported values are a mean of measurements performed with Image J software on six different cells ± s.e. * P<0.01.

Nanodrug increases nuclear DOX accumulation

Is DOX able to mediate nuclear translocation of DOX?

DOX-triggered nuclear translocation (I)

DOX-triggered Nuclear translocation of endogenous HFn

DOX-triggered Nuclear translocation of HFn nanocage

DOX triggered nuclear translocation of both endogenous and esogenous ferritin

DOX-triggered nuclear translocation (II)

DOX-triggered Nuclear translocation of encapsulated FITC

HFn is able to deliver FITC inside nuclear compartment after DOX stimulation

Self-triggered nuclear translocation (I)

Self-triggered Nuclear delivery of DOX

Confocal microscopy images of HeLa cells incubated for 3 and 24 h at 37 °C with 0.1 µM of HFn(DOX). HFn(DOX) was labeled with FITC (HFn; green) on the shell and then loaded with DOX (red).

Quantification of fluorescence signal of FITC-labelled HFn in the nucleus.

Schematic representation of self-triggered nuclear delivery of HFn(DOX). HFn were internalized upon the interaction with Tfr1 by receptor-mediated mechanism without incurring lysosomal degradation (a). Encapsulated DOX was partially released in the cytoplasm through hydrophobic channels of its architecture (b). Then DOX is pumped out of the action of P-glycoprotein (c), or diffuses into the nucleus where it causes the DNA damage (d), which triggers the nuclear translocation of HFn(DOX) (e), and the massive release of DOX in the nuclear compartment (f).

HFn nanocage restores DOX sensitivity in resistant cancer cells

Doxorubicin release inside the nuclear compartment of MDA-MB-468 cells

Confocal microscopy images of MDA-MB-468 cells incubated with 1 µM DOX free or encapsulated in HFn shell for 3 h or 24 h at 37°C.

Viability assay

Viability of cells treated with free DOX or HFn(DOX) (1 µM) for up to 72 h. Reported values are the mean of six replicates ± s.e., normalized on cell proliferation of untreated cells, **P<0.0005 (t-test).**

Viability of cells treated with HFn(DOX) with or without MDR proteins inhibition. Cells were treated with 1 µM of HFn(DOX) for up to 72 h with or without 1 µM Cyclosporin-A. Reported values are the mean of six replicates ± s.e., normalized on cell proliferation of untreated cells, respectively *P<0.05; **P<0.01 (t-test).

HFn Nanocage increases DOX efficacy also in DOX-resistant cells

Conclusions

- HFn nanocage is a good device for drug delivery in tumors, recognizing with high sensitivity cancer cells that overexpress TfR1
- No lysosomal degradation of HFn shell
- HFn(DOX) increase DOX efficacy in mediating block of proliferation and induction of cell death specifically to tumor cells
- HFn(DOX) increases DOX uptake and nuclear delivery of drug
- HFn(DOX) acts as a Trojan horse: the cytoplasmic release of DOX from hydrophobic channels triggers HFn(DOX) nuclear translocation
- HFn(DOX) is efficacy also on DOX-resistant cells
Acknowledgements

Center of Electron Microscopy for Nanotechnologies Applied to Medicine Department of Biomedical and Clinical Sciences «L. Sacco» University of Milan

Prof. Fabio Corsi MD
Dr. Luisa Fiandra
Dr. Marta Truffi
Raffaele Allevi
Prof. Manuela Nebuloni

Nanomedicine Laboratory «L. Sacco» University Hospital Milan

NanoBioLab Department of Biotechnology and Biosciences University of Milan-Bicocca

Dr. Davide Prosperi
Prof. Paolo Tortora
Dr. Miriam Colombo
Dr. Silvia Sommaruga
Dr. Elisabetta Galbiati
Michela Bellini

NanoMeDia Project (Regione Lombardia)
Fondazione Regionale per la Ricerca Biomedica