Soft Nanomaterials of POSS-based Copolymer for Arts Conservation

He Ling
Xian Jiaotong University, School of Science
Department of Chemistry
E-mail: heling@mail.xjtu.edu.cn
Contents

1 Background of protective requirement and POSS-based materials

2 Fabrication of POSS-based materials for conservation of artworks

3 Evaluation of protective performance
1. Background

Silicate Cultural Heritage

Earth
Wall Painting
Pottery
Sandstone
Ceramic

......
* **support:** wood, stone, clay, fiber, brick……

* **pigments:** nature minerals and dye

* **binding medium:** nature organic materials or polymers

What happened with time?
The main problem of these precious heritages?

Lost the bindings and colors because of the water and salt.
Silicate Cultural heritage is a special patient:

✓ It holds values (cultural, historical, esthetical, material,…….)

✓ It ages in an *irreversible* way with time

✓ It is a *passive* patient (doesn’t speak and doesn’t complain!!)

The patient doesn’t go spontaneously to the doctor but need to be protected.
Who are the doctors???

Conservation scientist

Conservator-restorer

Art historian/archaeologist
Is it possible to perform surgery (restore) on a patient without knowing his case and history (anamnesis)?

(i.e.: materials over paintings, techniques, past restoration, the properties of protective materials)
The problems need to be solved

* Understand the real nature of original materials
* Develop useful and reliable materials for the protection
* Establish protective methods

The functional materials should be the idea candidate
The basic requirement for the materials???

Requirements of materials for conservation of artworks

- Security and harmless to relics
- Suitable respiratory function
- Conformable chemical and physical properties with substrate
- Influence on the follow-up retreatment

Challenge
- The design and realization of function materials
Periodic structures with special wettability in nature

(A, B) hydrophilic pearl (water CA=45°);
(C, D) hydrophilic longhorn beetles Tmesisternus isabellae (water CA =25°);
(E, F) superhydrophobic mosquito eye (water CA =149.8°);
(G, H) superhydrophobic peacock (water CA =150°).
Polyhedral Oligomeric Silsesquioxanes (POSS)

1-3nm molecular dimension

(a) Random structure
(b) Ladder structure
(c) T8
(d) T10
(e) T12
(f) Partial cage structure
Polyhedral Oligomeric Silsesquioxanes (POSS)

- excellent surface properties (silicon polymer)
- remarkable film-forming properties (polymers)
- high thermal stability and chemical resistance (POSS)
- microphase separation
- self-assembly behavior in the selected solution
- adhesive strength control
Contents

1 Background of protective requirement and POSS-based materials

2 Fabrication POSS-based materials for conservation of artworks

3 Evaluation of protective performance
2.1 PGMA-\textit{g}-P(MA-POSS)

\begin{align*}
\text{GMA} & \quad \xrightarrow{\text{AlBN,70°C, THF}} \quad \text{I-POSS} \\
\text{BIBA,50°C, THF, refluxing} & \quad \xrightarrow{} \quad \text{I-PGMA-Br} \\
\text{ATRP,100°C, MA-POSS} & \quad \xrightarrow{} \quad \text{PGMA-\textit{g}-P(MA-POSS)}
\end{align*}
The TEM pictures of uncured Sample 1-4 (a-d), cured Sample 1-4 (e-h) and the size distribution table of PGMA-g-P(MA-POSS) in THF solution (m).

<table>
<thead>
<tr>
<th>Samples</th>
<th>Uncured Samples</th>
<th>Cured Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TEM/nm</td>
<td>DLS/nm</td>
</tr>
<tr>
<td>Sample 1</td>
<td>115</td>
<td>2.4(14.8%)</td>
</tr>
<tr>
<td></td>
<td>128.1(85.2%)</td>
<td></td>
</tr>
<tr>
<td>Sample 2</td>
<td>136</td>
<td>2.1(5.9%)</td>
</tr>
<tr>
<td></td>
<td>121.4(94.1%)</td>
<td></td>
</tr>
<tr>
<td>Sample 3</td>
<td>400</td>
<td>2.5(13.6%)</td>
</tr>
<tr>
<td></td>
<td>414.8(86.4%)</td>
<td></td>
</tr>
<tr>
<td>Sample 4</td>
<td>800</td>
<td>2.8(7.5%)</td>
</tr>
<tr>
<td></td>
<td>761.4(92.5%)</td>
<td></td>
</tr>
</tbody>
</table>
Surface properties of PGMA-g-P(MA-POSS) film

<table>
<thead>
<tr>
<th>Sample</th>
<th>before</th>
<th>after</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ra/nm</td>
<td>Ra/nm</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>0.19</td>
<td>0.14</td>
</tr>
<tr>
<td>S2</td>
<td>0.21</td>
<td>0.19</td>
</tr>
<tr>
<td>S3</td>
<td>0.33</td>
<td>0.63</td>
</tr>
<tr>
<td>S4</td>
<td>4.1</td>
<td>14.4</td>
</tr>
</tbody>
</table>
2.2 \textit{ap-POSS-PMMA}_m\text{-b-P(\text{MA-POSS})}_n
Sample 1: \(ap\text{-POSS-PMMA}_m \text{-b-} P(\text{MA-POSS})_n \)
155nm shovel-shape

Sample 2: \(ap\text{-POSS-PMMA}_m \text{-b-} P(\text{MA-POSS})_{4.3} \)
195nm core-shell

Sample 3: \(ap\text{-POSS-PMMA}_m \text{-b-} P(\text{MA-POSS})_{8.4} \)
295nm core-shell

Sample 4: \(ap\text{-POSS-PMMA}_m \text{-b-} P(\text{MA-POSS})_{10.0} \)
159nm core-shell-crown
2.2 a_p-POSS-PMMA_m-b-P(MA-POSS)_n

Sample 1
$Ra = 0.288 \text{ nm}$

Sample 2
$Ra = 0.816 \text{ nm}$

$\Delta m = 16520 \text{ ng/cm}^2$
$\Delta D/\Delta f = -0.02$

Sample 3
$Ra = 0.829 \text{ nm}$

Sample 4
$Ra = 1.690 \text{ nm}$

$\Delta m = 3540 \text{ ng/cm}^2$
$\Delta D/\Delta f = -0.18$
2.2 ap-$POSS$-$PMMA_m$-b-$P(MA$-$POSS)_n$
2.3 PDMS-b-PMMA_\textsubscript{m}-b-P(\text{MA-POSS})_n

\[
\text{PDMS-OH} \xrightarrow{\text{TEA, DMAP, 25°C}} \text{PDMS-Br}
\]

\[
\text{PDMS-Br} \xrightarrow{\text{CuCl / PMDETA, 80°C}} \text{PDMS-b-PMMA}_\text{m}-\text{Br}
\]

\[
\text{PDMS-b-PMMA}_\text{m}-\text{Br} \xrightarrow{\text{CuCl / PMDETA, 120°C}} \text{PDMS-b-PMMA}_\text{m}-\text{b-P(\text{MA-POSS})}_n
\]
2.3 PDMS-b-PMMA\textsubscript{m}-b-P(MA-POSS)\textsubscript{n}

- **S3**
 - $M\text{w}=53560$ g/mol
 - $M\text{n}=44090$ g/mol
 - PDI=1.215

- **S4**
 - $M\text{w}=58650$ g/mol
 - $M\text{n}=43040$ g/mol
 - PDI=1.363

- **S1**
 - $M\text{w}=45820$ g/mol
 - $M\text{n}=32930$ g/mol
 - PDI=1.391

- **S2**
 - $M\text{w}=50090$ g/mol
 - $M\text{n}=38420$ g/mol
 - PDI=1.304

- **S4**: 902MPa
- **S3**: 747MPa
- **S2**: 648MPa
- **S1**: 579MPa

DSC Exotherm
- **S1** (MA-POSS/\%w=0)
 - $T_g=95^\circ C$

- **S2** (MA-POSS/\%w=9.5)
 - $T_g=120^\circ C$

- **S3** (MA-POSS/\%w=17.3)
 - $T_g=129^\circ C$

- **S4** (MA-POSS/\%w=24)
 - $T_g=137^\circ C$

Tan Delta vs. Temperature

Storage Modulus (MPa)

Heating Flow (mW/mg)

Temperature (°C)
<table>
<thead>
<tr>
<th>Code</th>
<th>Solvents</th>
<th>$\Theta_{\text{H}_2\text{O}}$</th>
<th>Θ_{Hex}</th>
<th>γ/mNm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>THF</td>
<td>108°</td>
<td>20°</td>
<td>26.10</td>
</tr>
<tr>
<td></td>
<td>CHCl$_3$</td>
<td>110°</td>
<td>22°</td>
<td>25.63</td>
</tr>
<tr>
<td>S3</td>
<td>THF</td>
<td>114°</td>
<td>26°</td>
<td>24.93</td>
</tr>
<tr>
<td></td>
<td>CHCl$_3$</td>
<td>120°</td>
<td>32°</td>
<td>23.96</td>
</tr>
</tbody>
</table>
(a) THF:
241.2 nm, 76.3%
11.8 nm, 23.7%

(b) CHCl₃:
283.0 nm, 90.3%
11.4 nm, 9.7%

CHCl₃ (Δf = -2300Hz)
(ΔD = 26 × 10⁻⁶)

THF (Δf = -1540Hz,
ΔD = 52 × 10⁻⁶)
2.4 POSS-(PMMA-b-PDFHM)$_{16}$ and ap-POSS-PMMA-b-PDFHM
s-POSS-($PMMA$-b-$PDFHM$)$_{16}$

110 nm CS micelles

ap-POSS-$PMMA$-b-$PDFHM$ 200 nm CS micelles
Self-assembled micelles

POSS-(PMMA-b-PDFHM)$_{16}$ POSS-(PMMA)$_{16}$
ap-POSS-PMMA-b-PDFHM ap-POSS-PMMA
CHCl$_3$ (THF) (TFT) (CHCl$_3$-TFT)

1µm and 2µm round-flat convex

homogeneous film

3µm and 8µm round-flat convex

1µm round-flat aggregates

500 nm 1.3 nm 42 nm 1.5 nm

homogeneous film
Surface chemical composition

<table>
<thead>
<tr>
<th>Copolymers</th>
<th>Samples</th>
<th>Surface roughness</th>
<th>Chemical composition/wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ra/nm</td>
<td>RMSR/nm</td>
</tr>
<tr>
<td>s-POSS-(PMMA-b-PDFHM)$_{16}$</td>
<td>Powder</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Film/THF</td>
<td>4.9</td>
<td>50.4</td>
</tr>
<tr>
<td></td>
<td>Film/CHCl$_3$</td>
<td>6.1</td>
<td>82.8</td>
</tr>
<tr>
<td></td>
<td>Film/DMC</td>
<td>3.6</td>
<td>36.3</td>
</tr>
<tr>
<td>ap-POSS-PMMA-b-PDFHM</td>
<td>Powder</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Film/THF</td>
<td>18.5</td>
<td>100.6</td>
</tr>
<tr>
<td></td>
<td>Film/CHCl$_3$</td>
<td>23.6</td>
<td>143.0</td>
</tr>
<tr>
<td></td>
<td>Film/DMC</td>
<td>4.0</td>
<td>68.8</td>
</tr>
</tbody>
</table>
$\Delta f = -290 \text{ Hz}$;
$\Delta D/\Delta f = -0.27 \times 10^{-6} \text{ Hz}^{-1}$

$\Delta f = -1300 \text{ Hz}$;
$\Delta D/\Delta f = -0.077 \times 10^{-6} \text{ Hz}^{-1}$
Contents

1. Background of protective requirement and POSS-based materials

2. Fabrication POSS-based materials for conservation of artworks

3. Evaluation of protective performance
3.1 P1 and P2

P1
ap-POSS-PMMA$_{152}$-b-P(MA-POSS)$_{8.4}$

P2
PDMS-b-PMMA$_{408}$-b-P(MA-POSS)$_{8.2}$
<table>
<thead>
<tr>
<th>Materials</th>
<th>CA/g·cm$^{-2}$·s$^{-1/2}$</th>
<th>Water absorption/wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>R(D1)</td>
<td>1.53×10^{-3}</td>
<td>6.89</td>
</tr>
<tr>
<td>P1-D1</td>
<td>7.89×10^{-5}</td>
<td>2.46</td>
</tr>
<tr>
<td>P2-D1</td>
<td>6.58×10^{-5}</td>
<td>2.22</td>
</tr>
<tr>
<td>R(D2)</td>
<td>2.50×10^{-3}</td>
<td>11.15</td>
</tr>
<tr>
<td>P1-D2</td>
<td>1.98×10^{-3}</td>
<td>8.42</td>
</tr>
<tr>
<td>P2-D2</td>
<td>1.47×10^{-4}</td>
<td>5.95</td>
</tr>
</tbody>
</table>
ap-POSS-PMMA_{152}-b-$\text{P(MA-POSS)}_{8.4}$

PDMS-b-PMMA_{408}-b-$\text{P(MA-POSS)}_{8.2}$

$SCA = 128.6 \pm 3.6$

$SCA = 138.9 \pm 2.4$
a_{p}-POSS-PMMA$_{152}$-b-P(MA-POSS)$_{8.4}$

PDMS-b-PMMA$_{408}$-b-P(MA-POSS)$_{8.2}$

$SCA = 122.9 \pm 2.1$

$SCA = 128.7 \pm 1.6$
D1-

R(D1) 60.94% wt
P1-D1 3.43% wt
P2-D1 0.07% wt

D2-

R(D2) 24.66% wt
P1-D2 20.23% wt
P2-D2 23.88% wt

9 cycles for salt-crystallization

60 cycles for freeze-throwing
3.2 Hydrophobic application

Untreated THF CHCl₃ DMC

ap-POSS-PMMA-b-PDFHM
The contact angle (CA) of the stones after treated by the acid (pH=1) and alkali (pH=14)
ACKNOWLEDGMENTS

The National Basic Research Program of China
(973 Program, No. 2012CB720904)

The Key Project in the National Science & Technology Pillar
Program of China (No. 2010BAK67B12)

National Science Foundation of China (NSFC)
No. 51373133, 51073126
No. 51373133, No.51210305018
Thank you all for your attention!