Cumulative risk assessment on the dietary exposure of Finnish children to heavy metals

Johanna Suomi
Risk Assessment Research Unit
Finnish Food Safety Authority Evira
Effects of heavy metals

Oxidative stress
Function of various enzymes
Ca metabolism (Cd, Pb)
Fe metabolism (Pb)
Metallohormones?

Type I carcinogens (As, Cd)
Type IIA carcinogen (Pb)
Type IIB carcinogen (Hg)
Effects on DNA repair mechanism

Pb, MeHg, iAs, Cd

Cd, Pb, iAs, iHg, MeHg

Cd, Pb, iAs, iHg

CNS / PNS

CVD or blood pressure

kidney damage

(Not exhaustive list)
Data used for exposure assessment

- Individual consumption data on 1Y, 3Y, 6Y Finnish children
 - Collected in national DIPP study
 - 3 days food diary

- Concentration data on the main food groups
 - Mainly Finnish monitoring data
 - Food produced in Finland or imported to Finland

+ ready-made foods for children
Exposure assessment

- MCRA (Monte Carlo Risk Assessment) https://mcra8.rivm.nl/
- Exposure of each age group (1Y, 3Y, 6Y) assessed separately
 - For each heavy metal
 - As well as cumulative exposure to all heavy metals

![Diagram showing exposure assessment process]

- Database of consumption
- Probabilistic calc. 100 k simulations
- Database of concentrations
- Distribution of exposure to studied compound in studied population group

Johanna Suomi
10.8.2015

Evira
EFSA assessments of exposure to heavy metals (one at a time)

Finnish results to be published this autumn!

Unit µg/kg body weight /day

<table>
<thead>
<tr>
<th>Age group and level</th>
<th>i As</th>
<th>MeHg</th>
<th>i Hg</th>
<th>Cd</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–2 years, mean</td>
<td>0.7</td>
<td>0.04</td>
<td>0.2</td>
<td>0.7</td>
<td>1.3</td>
</tr>
<tr>
<td>1–2 years, P95</td>
<td>1.4</td>
<td>0.2 / 0.7*</td>
<td>0.2</td>
<td>0.9</td>
<td>1.7</td>
</tr>
<tr>
<td>3–10 years, mean</td>
<td>0.5</td>
<td>0.05</td>
<td>0.1</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td>3–10 years, P95</td>
<td>0.8</td>
<td>0.2 / 0.6*</td>
<td>0.2</td>
<td>0.9</td>
<td>1.6</td>
</tr>
<tr>
<td>Adults, mean</td>
<td>0.2</td>
<td>0.03</td>
<td>0.06</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Adults, P95</td>
<td>0.4</td>
<td>0.2 / 0.3*</td>
<td>0.1</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>EFSA assessment year</td>
<td>2014</td>
<td>2012</td>
<td>2012</td>
<td>2012</td>
<td>2012</td>
</tr>
<tr>
<td>TDI or BMDL</td>
<td>0.3 – 8 3 (2 – 7)</td>
<td>0.19</td>
<td>0.57</td>
<td>0.36</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Values are EU member state median values (middle bound)

(*) consumers only
From exposure to single compounds to cumulative risk

• Assumed additive (1+1=2) effect on:
 – Nervous system damage (Pb, MeHg, iAs, Cd)
 – Kidney damage (Cd, Pb, iAs, iHg)

• Literature data on dose-response

• Cumulative effect:
 – $A \times Cd + B \times Pb + C \times iAs + D \times Hg$ (iHg or MeHg)
 – Factors A to D may be very different depending on toxicity of chemical to this tissue

• Consumption * cumulative concentration (on MCRA)

• Compare: CRA on pesticides
 – TEF’s for each compound → Total risk for mixture

10.8.2015
Johanna Suomi
Cumulative risk of heavy metals

• Cumulative risk with neurotoxic endpoint
 – Dose-response values Pb < MeHg < Cd < iAs
 – Total cumulative exposure mainly from Pb
 – Contribution of Cd 16 – 21% and of iAs 6 – 8%
 – Contribution of MeHg 1 – 3% for age group median, for high users contribution of MeHg increases

• For kidney damage endpoint, dose-response values varied more. Main contributor to total cumulative exposure was Cd.
Cumulative risk of heavy metals: problems

• Toxicological data on chosen endpoints from literature
 PROBLEM: lack of comparable quantitative data
 → e.g. level of enzyme in urine vs. kidney weight change
 → source of error in the estimation

• More toxicological research needed to confirm results!

Johanna Suomi
10.8.2015
Risk assessment project group (all from Evira RISK):
Johanna Suomi, Pirkko Tuominen, Kirsti Savela

Gratefully acknowledged for data and expert opinions:
– Finnish Customs Laboratory
– Evira
– University of Helsinki
– Finnish Environment Institute
– Natural Resources Institute Finland
– Ministry of Agriculture and Forestry
– National Institute for Health and Welfare

Risk assessment report on the project to be published in September/October 2015 (www.evira.fi)
– Finnish, with extended English summary

Johanna Suomi
10.8.2015
Thank you for your kind attention!