15-lipoxygenases and their metabolites as biomarkers for the early detection of smoking-induced non-small cell lung cancer

George G Chen
Department of Surgery, Cancer Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong
Incidence of lung cancer

<table>
<thead>
<tr>
<th>Site</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung & bronchus</td>
<td>29%</td>
<td>26%</td>
</tr>
<tr>
<td>Prostate</td>
<td>11%</td>
<td>15%</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>9%</td>
<td>9%</td>
</tr>
<tr>
<td>Pancreas</td>
<td>6%</td>
<td>7%</td>
</tr>
<tr>
<td>Liver & intrahepatic bile duct</td>
<td>4%</td>
<td>5%</td>
</tr>
<tr>
<td>Leukemia</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Esophagus</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>3%</td>
<td>2%</td>
</tr>
<tr>
<td>Kidney & renal pelvis</td>
<td>3%</td>
<td>2%</td>
</tr>
<tr>
<td>All other sites</td>
<td>23%</td>
<td>24%</td>
</tr>
</tbody>
</table>

Source: American Cancer Society, 2010.
Etiology of lung cancer

Smokers
1. Smoking carcinogens: nicotine and its derivative N-nitrosamines, such as nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN). - associated with 70-90% of lung cancer.
2. Genetic factor.
3. Other unidentified factors.

Non-smokers
1. Environmental: environmental tobacco smoke (ETS) or environmental smoke (ES) such as passive/second-hand smoking and emissions from high-temperature frying. - the major factor.
3. Genetic: family history, racial differences.
4. Viral: human papilloma virus (HPV), jazz siekte sheep retrovirus (JSRV).
5. Dietary.
7. Previous lung diseases.
Histologic classification of lung cancer

Non-small cell lung carcinoma (NSCLC) (~80%)
- Adenocarcinoma (40%)
- Large cell carcinoma (25%)
- Squamous cell carcinoma (10%)
- Others (adenosquamous carcinoma, sarcomatoid carcinoma) (<5%)

Small cell lung carcinoma (SCLC) (~20%)

Other types of lung cancers (<1%)
- Lung carcinoid cancer
- Adenoid cystic carcinomas
- Hamartomas
- Lymphomas
- Sarcomas
Lung cancer histologic types related to smokers and non-smokers
15-lipoxygenases (LOXs) are members of non-heme iron-containing dioxygenases. In human, 2 isoforms:
15-LOX1 (15-LOa)
15-LOX2 (15-LOb)
In mice, only one form: 12/15-LOX - the murine ortholog to human 15-LOXs.
Linoleic acid (LA) → 15-LOX-1 → 13(S)–HODE (hydroxyotadecadienoic acid)

Arachidonic acid (AA) → 15-LOX-1 → 15(S)-HETE (hydroxyeicosatetraenoic acid)
Why were 15-lipoxygenases and their metabolites selected for the study?

The metabolites of 15-lipoxygenases, 15S-HETE and 13S-HODE, are the endogenous ligands of peroxisome proliferator-activated receptor gamma (PPARγ), whose activity is significantly reduced in lung cancer, particularly, smoking-related NSCLC.

Levels of 15(S)-HETE, 13(S)-HODE, 15-LOX-1 and 15-LOX-2 in human lung tissues

(a)

Levels of 15(S)-HETE and 13(S)-HODE in non-tumor and tumor tissues.

(b)

Percentage of 15-LOX-1 and 15-LOX-2 in non-tumor and tumor tissues.
NNK-induced lung tumors in A/J mice

6 weeks old
A single dose of NNK 100mg/kg Peritoneal injection (i.p.)

Week 20-24
Epithelial/alveolar hyperplasia

Week 34
Adenocarcinoma

Week 38
End of experiments

PBS control

NNK treatment

NNK: 4-(methyl nitrosamino)-1-(3-pyridyl)-1-butanone, a major cigarette smoking carcinogen.
Histopathology of lungs in control and NNK-treated group
Levels of 15(S)-HETE and 13(S)-HODE in lung tissues of A/J mice
Levels of 12/15-LOX in lung tissues of A/J mice
(12/15-LOX is ortholog to human 15-LOXs)
Expression of PPARγ protein and PPARγ transcriptional activity during NNK-mediated lung tumorigenesis in A/J mice
Levels of 15(S)-HETE and 13(S)-HODE in lung tissues of A/J mice
Serum 15S-HETE and 13S-HODE in patients with NSCLC
Correlation between Serum 15S-HETE/13S-HODE and tissue 15S-HETE/13S-HODE in patients with NSCLC
Effects of 15(S)-HETE and 13(S)-HODE on the proliferation of human NSCLC cells

- **a**: Cell proliferation of NCI-H23 cells treated with varying concentrations of 15(S)-HETE at 24, 48, and 72 hours.
- **b**: Cell proliferation of NCI-H460 cells treated with the same conditions.
- **c**: Cell proliferation of NCI-H23 cells treated with 13(S)-HODE at 24, 48, and 72 hours.
- **d**: Cell proliferation of NCI-H460 cells treated with 13(S)-HODE at the same time points.
Induction of apoptosis by 15(S)-HETE and 13(S)-HODE – sub-G1 population

p=0.0012

p=0.009

p=0.032

p=0.005

p=0.016

p=0.047

p=0.012

p=0.042
Induction of apoptosis by 15(S)-HETE and 13(S)-HODE – caspases in NCI-23
Induction of apoptosis by 15(S)-HETE and 13(S)-HODE – caspases in NCI-460
Restoration of 15-LOX-1 and 15-LOX-2 increases the levels of 15(S)-HETE and 13(S)-HODE.
Conclusions

1. The levels of 15-LOX-1 and -2 were significantly decreased in lung tissues of human NSCLC compared with the matched non-tumor lung tissues.

2. The levels of 15S-HETE and 13S-HODE, the metabolites of 15-LOX-1 and -2, were reduced in the blood of NSCLC patients compared with normal subjects.

3. The reduction of 15-LOX, 15S-HETE and 13S-HODE predated the appearance of mouse lung tumor induced by tobacco smoking.

4. 15(S)-HETE and 13(S)-HODE or 15-LOX-1 and 15-LOX-2 can inhibit the proliferation and growth of human NSCLC cells.

5. Strategies to restore 15-LOXs activities and increase the production of endogenous 15(S)-HETE and 13(S)-HODE may offer a novel research direction for the molecular targeting treatment and prevention for smoking-related NSCLC.
Acknowledgements

The following persons participate in this study: M-Y Li, H-L Yuan, Rueyue Huang, Yi Liu, CSH Ng, IYP Wan, Billy Leung, Rocky Ho. Ernest Chad, Angle Kong, Tony SK Mok, MJ Underwood

This study is supported by grants from the Research Grants Council of the Hong Kong SAR (CUHK 462613), CUHK direct grant 2014.1.092, and NSFC 81472742.

Thank you!