The Sympathetic Nervous System (SNS)

A not so “sympathetic” regulator of immune function in autoimmune disease:
RA as an example

Dianne Lorton‡
Denise Bellingerα

Kent State University‡
Loma Linda Universityα

Blood Borne Signals
TNF, IL-1, IL-6

Neural-Immune Cross-Talk

Thymus
Bone Marrow
Lymph Node
GALT
Blood
Spleen
Lymphocytes
Macrophages
Dendritic cells
Others

Pathogens

Disease

Sympathetic Nervous System

X
Rheumatoid Arthritis

- Autoimmune Disease
 - Chronic inflammatory response
 - Production of autoantibodies
 - Loss of Tolerance: Imbalance between autoreactive effector T cells (CD4+ Th1 & Th 17) and T reg cells

- Th cell balance regulated by the SNS

- SNS activity is chronically elevated in RA patients

- How this impacts Th cell balance is not known
SNS Regulates Th Cell Differentiation via β^2-AR Activation of cAMP-PKA Pathway

β_2

CD4+ β_2 (200-750 sites/cell)
CD4+ Th1 clones β_2 (250 sites/cell)
CD4+ Th2 clones (no detectable β_2)
CD4+ Treg cell 1?
CD4+ Th17 cells?

APCs

α, α_1, α_2, β, β_2

β_2-AR Shifts Th0 cell \rightarrow Th2 Differentiation

Guereschi et al., 2013
Hypothesis: Reduce disease severity is due in part to a β_2-AR driven shift in Th1 vs Th2 cell balance.

(AA: Lorton et al., 1998; 2004) (CIA: Malfait et al., 1999; Härle et al., 2005)
Day 0
Terbutaline (β₂-AR agonist; 1.5 mg/ml/day i.p.)
Saline Vehicle

Day 12-28
Terbutaline (β₂-AR agonist; 1.5 mg/ml/day i.p.)

Adjuvant-Induced Arthritis (AA)
CFA (0.3 mg M. butyricum in 100 µl MO)

Day 28
Outcome Assessments
Th1/2 cell cytokines (ELISAs)
Foot Pad Swelling (data not shown)
X-ray analysis (data not shown)

Spleen PBMCs
Draining Lymph Nodes (DLN)
Spleen: Failure of a β_2-AR agonist to shift from a Th1 to Th2 cytokine profile

A. IFN-γ (pg/ml)

B. TNF-α (pg/ml)

C. IL-2 (pg/ml)

D. IL-10 (pg/ml)

No Change in IL-4; (40-80 pg/ml)

Anova with Bonferoni post-hoc test, N = 8
DLN: β_2-AR agonist promotes a Th1 cytokine profile

A. IFN-γ (pg/ml)

B. TNF-α (pg/ml)

C. IL-2 (pg/ml)

D. IL-10 (pg/ml)

No Change in IL-4 (40 -80 pg/ml)

Anova with Bonferoni post-hoc test, N = 8; *P<0.05
PBMC: Failure of a β2-AR agonist to shift Th1 cytokine profiles

A. B. C. D.

Conclusions

- Different responses in each tissue examined: animal models critical for understanding RA
- Stimulating β_2-ARs after disease onset fails to inhibit Th1 cell driving cytokines
 - Spleen: β_2-AR agonists produced no change IFN-γ, IL-2, IL-4 or TNF-α, and increased IL-10 (source ?)
 - DLN stimulating β_2-ARs promotes IFN-γ & IL-2, no change in IL-4, IL-10, TNF-α
- β_2-AR stimulation under normal circumstances inhibits IFN-γ and IL-2 production via cAMP-PKA
- These findings indicate abnormal β_2-AR functions
Conclusions

- In spleen cells, the inability of terbutaline to reduce IFN-γ and IL-2 could be easily explained by the well-known down-regulation and desensitization of β₂-AR with repeated stimulation.

- Subsequent, cAMP assays and receptor binding experiments, confirmed this hypothesis (Lorton et al., Clin Dev Immunol., 2013)

- However, the terbutaline-induced increase in IFN-γ and IL-2 were intriguing. not explained by canonical signaling of β₂-AR
Does Altered β2-AR Coupling to Second Messengers Occur in DLNs in AA: cAMP-PKA to ERK1/2?

β-Arrestin-dependent, G Protein-independent ERK1/2 Activation by the β2 Adrenergic Receptor*

Received for publication, June 16, 2005, and in revised form, November 2, 2005 Published, JBC Papers in Press, November 9, 2005, DOI 10.1074/jbc.M506576200

Sudha K. Shenoy‡1, Matthew T. Drake‡2, Christopher D. Nelson‡, Daniel A. Houtz‡, Kunhong Xiao‡, Srinivasan Madabushi§, Eric Reiter‡¶, Richard T. Premont‡, Olivier Lichtarge§, and Robert J. Lefkowitz‡3
Altered Receptor Signaling in the DLN?

Canonical

- **nerve terminal**
 - Gs
 - AC
 - ATP → cAMP → PKA → Transcription Factors → Gene Regulation

Noncanonical

- **nerve terminal**
 - Gs
 - AC
 - ATP
 - GRK5/6
 - PKA
 - ERK1/2 MAPK
 - β-Arrestin
 - Transcription Factors → Gene Regulation

Legend
- ATP
- cAMP
- PKA
- Transcription Factors
- Gene Regulation
- β-Arrestin
- Gs
- AC
- ERK1/2 MAPK
Hypothesis: Terbutaline induces a shift in β₂-ARs signaling from cAMP-PKA to ERK 1/2 in the DLN

Adjuvant-Induced Arthritis (AA)

Day 1
- CFA (0.3 mg M. butyricum in 100 µl MO)
- Mineral Oil (MO)
- M. Butyricium (in saline; SMB)

Day 12-28
- Terbutaline (β₂-AR agonist; 1.5 mg/ml/day i.p.)
- Saline Vehicle

Day 21 or 28

Outcome Assessments
- DLN: β₂-AR Western Blots
 (antibodies to detect β₂-ARs, and β₂-ARs phosphorylated by PKA and or GRK)

Draining Lymph Nodes (DLN)
Unchanged DLN β_2-AR Density Late Disease

A. D21

B. D28

ANOVA; Bonferoni Post-Hoc Test N=4; *P < 0.05; **P < 0.01, ***P<0.001
Conclusions: These findings along with increased IFN-γ indicate that β2-ARs in DLN are NOT down-regulated or desensitized.
β₂-AR phosphorylated by PKA and GRK in DLN

A. D21

\[\frac{\beta_2-AR_{PKA:\beta_2-AR_T}}{\beta_2-AR_{GRK:\beta_2-AR_T}}\]

B. D28

\[\frac{\beta_2-AR_{PKA:\beta_2-AR_T}}{\beta_2-AR_{GRK:\beta_2-AR_T}}\]

C. D21

D. D28

ANOVA; Bonferoni Post-Hoc Test N=4; *P < 0.05; **P < 0.01, ***P < 0.001
Conclusions: These findings coupled with increased IFN-γ, provide support β2-AR signaling via ERK1/2.
Summary

➢ Findings support a shift in β_2-AR receptor signaling from cAMP-PKA to ERK1/2 in DLN

• β_2-AR agonist elevated IFN-γ and IL-2
• No change in β_2-AR density,
• Receptor phosphorylation by PKA increased PKA (day 21) and GRK phosphorylation (day 21 and 28)
Future Studies

• Are GRK5/6 and ERK 1/2 elevated in DLN cells?
• Can production of IFN-γ be blocked by inhibitors of ERK1/2 pathway?
• Why the different profiles in the spleen and DLN?
 – Inflammatory cytokine levels
 – CFA distribution/concentration
• Does the SNS regulate balance between Th17 and Treg cells?
Acknowledgements

Kent State University
Cheri Lubahn, Ph.D.
Jill Schaller
Tracy Osredkar

Loma Linda University
School of Medicine
Denise Bellinger, Ph.D.
Christine Molinaro

Funded by: NIMH, NIAMS, Arizona Disease CRC, Sun Health Research Institute & Sun City West Community Center Fund, LLU Anatomy and Pathology Dept.
SNS Function: Respond to stress & maintain normal body functions (homeostasis)

The SNS integrates the functions of many systems required to mount an immune response.
SNS Inhibition of Th1 Cytokines (IFN-γ and IL-2) to Push Th2 Cell Differentiation Occurs via β2-AR of cAMP-PKA Pathway

CD4+ β2 (200-750 sites/cell)
CD8+ β2 (500-2500 sites/cell)
CD4+ Th1 clones β2 (250 sites/cell)
CD4+ Th2 clones (no detectable β2)
CD4+ Treg cell
CD4+ Th17 cells?

The SNS integrates the functions of many systems required to mount an immune response.

Function:
Respond to stress & maintain normal body functions (homeostasis) (allostasis - a new "adaptive" normal)
Reciprocal Immune System to SNS Communication in RA

- Mechanism for emotional distress to impact health & disease
- ~ 80% of patients associate disease onset with a severe emotional life stressor (Trigger?)
- Stroke Victims: no RA in paralyzed limbs (↓ vs ↑ SNS nerve activity)
Splenocyte β_2-AR Receptor Binding in Arthritic Rats: Saturation Curves

Saline Rx

- $B_{\text{max}} = 4497$
- $K_d = 12.08$

SMB Rx

- $B_{\text{max}} = 2023$
- $K_d = 8.216$

Mineral oil Rx

- $B_{\text{max}} = 5405$
- $K_d = 25.82$

CFA Rx

- $B_{\text{max}} = 3828$
- $K_d = 23.41$
SNS-IS Cross-Talk Pathology in RA: Reduced Spleen β_2-AR Density Late Disease

A. D21

B. D28

ANOVA; Bonferoni Post-Hoc Test
N=4; *P < 0.05; **P < 0.01, ***P<0.001

β₂-AR Phosphorylation Patterns in the Spleen

ANOVA; Bonferoni Post-Hoc Test
N=4; *P < 0.05; ** P < 0.01, ***P<0.001
Hypothesis: Chronic high SNS activity in RA induces β_2-AR down regulation and desensitization

Day 1
- a0.3 mg Mycobacterium butyricum in 0.1 ml sterile mineral oil

Day 28
- aCFA/ICA (vehicle)
- Autoantigen: HSP 65

Day 14

Day 28
- cAMP assay
- β_2-AR Receptor Binding Assays
- β_2-AR Western Blots
- Harvest Spleen & DLN cells
- using antibodies to detect phosphorylated receptor
Adjuvant-Induced Arthritis Rat Model

CFA (0.3 mg M. butyricum in 100 µl MO)

Disease Induction
Autoreactive T cells in DLNs
Autoreactive T cells in spleen
Disease Onset
Peak Disease
Chronic Disease

0 3 7 12 21 28 Days

Day 1
Day 14
Day 28
Hypothesis: Chronic high SNS activity in RA induces β₂-AR down regulation and desensitization in splenocytes.
Hypothesis: Chronic high SNS activity in RA induces β_2-AR down regulation and desensitization in the spleen.

Day 1
- CFA (0.3 mg M. butyricum in 100 µl MO)
- Mineral Oil (MO)
- M. Butyrlicium (in saline; SMB)

Day 12-28
- Terbutaline (β_2-AR agonist; 1.5 mg/ml/day i.p.)
- Saline Vehicle

Day 21 or 28
Outcome Assessments
- Spleen: cAMP assay (spleen)
- β_2-AR Binding Assays
- DLN: β_2-AR Western Blots (antibodies to detect β_2-ARs)
SNS-IS Cross-Talk Pathology in RA: β₂-AR Agonist Fails to Induce cAMP in Splenocytes

Anova with Bonferoni post-hoc test, Day 28; N = 8; *P<0.05

SNS-IS Cross-Talk Pathology in RA: Splenocyte β_2-AR have Reduced Agonist Affinity and Density

A. Kd (ICYP (pM))

- Saline
- Mineral Oil
- SMB
- CFA

B. Bmax (sites/cell)

- Saline
- Mineral Oil
- SMB
- CFA

ANOVA; Bonferoni Post-Hoc Test
N=6; \ast P < 0.05; $\#$ P < 0.01

Hypothesis: Chronic high SNS activity in RA induces \(\beta_2\)-AR down regulation and desensitization in the spleen

Day 1
- CFA (0.3 mg M. butyricum in 100 \(\mu\)l MO)
- Mineral Oil (MO)
- M. Butyricium (in saline; SMB)

Day 12-28
- Terbutaline (\(\beta_2\)-AR agonist; 1.5 mg/ml/day i.p.)
- Saline Vehicle

Day 21 or 28

Outcome Assessments
- Spleen: cAMP assay (spleen)
- \(\beta_2\)-AR Binding Assays
- DLN: \(\beta_2\)-AR Western Blots
 (antibodies to detect \(\beta_2\)-ARs)
Altered Receptor Signaling in the DLN?

Nerve terminal

↑↑↑ activity

PKA

GRK2

Gs

AC

Desensitization

or

Dephosphorylated
Recycled to membrane

Transported to lysosome
Degraded

β-Arrestin

Canonical

PKA

GRK5/6

Gs

AC

ERK1/2 MAPK

β-Arrestin

Transcription Factors

Gene Regulation