A STUDY OF THE FLUIDIC MOVEMENT OF THE HYDRATED PRODUCTS FROM THE EARLY CARBONATION CURING IN CEMENTITIOUS PASTE AND THE EFFECTS ON THE MECHANICAL AND POROSITY PROPERTIES

*E-mail: alexnevesjr@gmail.com

Alex Neves Junior*a,b, Romildo Dias Toledo Filho*a, Eduardo de Moraes Rego Fairbairn*a, Jo Dweck*c
SUMMARY

1. BACKGROUND

2. OBJECTIVES

3. MATERIALS

4. METHODS

5. RESULTS

6. CONCLUSIONS
1. BACKGROUND

2. OBJECTIVES

3. MATERIALS

4. METHODS

5. RESULTS

6. CONCLUSIONS
CO₂ absorption principle in cementitious materials:

- **Mainly hydration reactions:**

 \[3C_3S + 6H_2O \rightarrow C - S - H + 3Ca(OH)_2 \]

 \[2C_2S + 4H_2O \rightarrow C - S - H + Ca(OH)_2 \]

- **Mainly carbonation reaction:**

 \[Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O \]

Conditions:
- At early stages:
 - Porous water
 - High porosity
Fig.1 - Fluidic Movement x Hydration and Carbonation reactions
In a previous work of the authors (*) the best conditions achieved to capture CO$_2$ in cementitious paste were:

- Water to cement ratio: 0.7
- Initial hydration time: 6h
- Relative humidity: 60%
- Temperature: 25°C
- CO$_2$ concentration in volume: 20%

CARBONATED SAMPLES for 24 hours

prepared at the best conditions

Were compared with NON CARBONATED REFERENCES

- 4 Cylinders (25 x 50mm) for each case
- Compressive strength was measured after 28 days.
References X Carbonated Samples

- The compressive strengths of the carbonated cylinders were about 51% of the non carbonated references.

Fig. 2 – Reference sample

Fig. 3 – Carbonated sample
1. BACKGROUND

2. OBJECTIVES

3. MATERIALS

4. METHODS

5. RESULTS

6. CONCLUSIONS
• The purpose of this work was to evaluate by Thermogravimetry (TG) and Derivative Thermogravimetry (DTG), the evolution of the amount of hydrated products in cylinders treated with CO$_2$ in different times of carbonation and its relationship with the compressive strength.
1. BACKGROUND
2. OBJECTIVE
3. MATERIALS
4. METHODS
5. RESULTS
6. CONCLUSIONS
• High Strength and Sulphate Resistant Portland Cement (HS SR PC).

• Deionized Water.
4. METHODS
• 25 cylinders were prepared with 25mm of diameter and 50mm of height.

• 5 different times of carbonation: 1, 2, 4, 8 e 12h were used after 6h of non carbonated hydration.

During carbonation:

• relative humidity: 60%
• temperature: 25°C
• CO₂ concentration in volume: 20%
Performed analyses

Compressive strength
- 4 cylinders for each time.
- Cured at RH=100% after carbonation.
- At 14 days.

Thermal analysis
- 1 cylinder for each time.
- Analysis after the carbonation time.
- Aliquots from 4 different regions.

Fig 4 – Detail of the cylinder’s studied regions by thermal analysis (distances in cm)
- The Thermal Analyses were performed in a TA Instruments, SDT Q600 Model, TGA/DTA/DSC Simultaneous equipment;

- The Heating Rate was 10°C.min⁻¹ until 1000°C, using 100 mL min⁻¹ of nitrogen flow, after initial drying step for 1h at 35°C;

- Platinum pans for reference and samples.

- Hydration process was stopped using acetone after carbonation time.

- The compressive strength was performed in a SHIMADZU machine, model UH – F1000kN with a loading speed of 0,01mm/min
1. BACKGROUND

2. OBJECTIVE

3. MATERIALS

4. METHODS

5. RESULTS

6. CONCLUSIONS
Fig 5 – TG curves on initial cement mass basis of carbonated samples for the $r=0$ region

Fig 6 – DTG curves on initial cement mass basis of carbonated samples for the $r=0$ region
Fig 7 – TG curves on initial cement mass basis of carbonated samples for the \(r=1,25 \) region

Fig 8 – DTG curves on initial cement mass basis of carbonated samples for the \(r=1,25 \) region
Fig 9 – Ca(OH)$_2$ content on initial cement mass basis
Fig 10 – CaCO₃ content on initial cement mass basis
Fig 12 - Compressive strength x CO₂ time exposure
1. BACKGROUND
2. OBJECTIVE
3. MATERIALS
4. METHODS
5. RESULTS
6. CONCLUSIONS
• With 1 and 2h of carbonation treatment, the compressive strength of the carbonated specimens was higher than the reference;

• The increase of the carbonation time decreases the compressive strength;

• The mechanical resistance of the carbonated paste is lower than that of the reference after 2h of carbonation because carbonation of the C-S-H phase occurs, as indicated by the respective DTG peaks;
• 12h of carbonation treatment is enough for the complete consumption of the Ca(OH)$_2$;

• In spite of the CO$_2$ exposure time increases its capture, it is not recommended, because it affects negatively the resulting mechanical resistance.
Acknowledgments

- We acknowledge the experimental assistance of the Rio de Janeiro Federal University, Civil Engineering Structure Laboratory, Thermal Analysis Laboratory of the School of Chemistry and the financial sponsoring of the Brazilian National Research Council (CNPq). Finally the Federal University of Mato Grosso by the funding support.
Thanks you!