OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of making the information on Sciences and technology ‘Open Access’, OMICS Group publishes 400 online open access scholarly journals in all aspects of Science, Engineering, Management and Technology journals. OMICS Group has been instrumental in taking the knowledge on Science & technology to the doorsteps of ordinary men and women. Research Scholars, Students, Libraries, Educational Institutions, Research centers and the industry are main stakeholders that benefitted greatly from this knowledge dissemination. OMICS Group also organizes 300 International conferences annually across the globe, where knowledge transfer takes place through debates, round table discussions, poster presentations, workshops, symposia and exhibitions.
OMICS Group International is a pioneer and leading science event organizer, which publishes around 400 open access journals and conducts over 300 Medical, Clinical, Engineering, Life Sciences, Pharma scientific conferences all over the globe annually with the support of more than 1000 scientific associations and 30,000 editorial board members and 3.5 million followers to its credit.

OMICS Group has organized 500 conferences, workshops and national symposiums across the major cities including San Francisco, Las Vegas, San Antonio, Omaha, Orlando, Raleigh, Santa Clara, Chicago, Philadelphia, Baltimore, United Kingdom, Valencia, Dubai, Beijing, Hyderabad, Bengaluru and Mumbai.
Role of Supervised pattern recognition in medicinal plants identification

Mohamed F. AlAjmi, PhD
King Saud University, College Of Pharmacy, Pharmacognosy dept.
Alajmister@gmail.com
Objectives

• To explore the power of Supervised pattern recognition in medicinal plants authentication.
• To study the relationship between sample preparation and quality of data.
Medicinal plants variability

• All the biochemical and medicinal ingredients in *Mentha longifolia* varied significantly during different seasons.
Medicinal plants variability

- Adhatoda vasica (Pandita et al., 1983),
- Mentha pulegium (Stengele et al., 1993),
- Sargassum wightii (Reeta, 1993),
- Mentha spicata (Kofidis et al., 2004),
- Toona sinensis (Wang et al., 2007),
- Adiantum capillus-veneris (Ahmad et al., 2008),
- Ocimum basilicum (Hussain et al., 2008),
- and Ulva reticulata (Shanrnugam & Palpandi, 2008).
Classification methods

• Several classification techniques have been proposed, each of them with different properties and skills, offering to the scientist different approaches for solving classification problems.
Classification methods

- Macroscopic features e.g. inflorescence description, Linnaeus system.
- Microscopic features e.g. Ca oxalate crystals.
- Biomarkers e.g. Naringin in *Rumex* and Menthol in *Mentha* (Peppermint)
- Genotyping
Classification methods

- Tedious work!
- Big variation!
- Potential for misidentification especially varieties (same species but small difference e.g. Catha varieties)
- Useless in Herbal powdered mixtures.
- Remember! Herbs might be a treatment and might be poisonous?!
- Can Multivariate analysis help in solving these problems?
Medicinal plants variability

- Ameyaw et al (Phytochemistry Department and Microbiology Department, Centre for Scientific Research into Plant Medicine, Mampong- Akuapem)
- Ghana
Medicinal plants variability

1. Alchornea cordifolia (Schum.& Thonn.) Stapf Leaves ACI
2. Cinnamomum zeylanium Nees Leaves CVl
3. Clausena anisata (Will.) Hook.f.ex Benth Root bark CARb
4. Cryptolepis sanguinolenta (Lindl.) Schtr. Root bark CSrb
5. Cnestis ferruginea DC Leaves CFl
6. Hoslundia opposita Vahl Leaves HOI
7. Lippia multifolia Moldenke Leaves LMI
Medicinal plants variability

8. Morinda lucida Benth Leaves MLl
9. Ocimum gratissimum Linn. Leaves OGl
10. Psidium guajava Linn. Leaves PGl
11. Spondias mombin Linn. Leaves SMl
12. Tridax procumbens Whole plant TPwp
13. Xylopia aethiopica (Dunal) A. Rich Fruits XAf
14. Zanthoxylum xanthoxyloides (Lam.) Waterm Root bark ZXrb
Medicinal plants variability

• Five replicates were prepared for each plant organ per location and the mean value computed.
Medicinal plants variability

• The Duncan’s Multiple Range Test and Principal Component Analysis were applied to assess the level of significant differences and weighting of the medicinal plant species.
Medicinal plants variability

<table>
<thead>
<tr>
<th>Name of plant species</th>
<th>Family</th>
<th>Local name</th>
<th>Plant part used</th>
<th>Total extraction (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alchornea cordifolia</td>
<td>Euphorbiaceae</td>
<td>Agyamma, Gyeka, Gboo, Gbloo, Ahama</td>
<td>Leaves</td>
<td>28.30 (g)</td>
</tr>
<tr>
<td>Cinnamomum zeylanium</td>
<td>Lauraceae</td>
<td>------</td>
<td>Leaves</td>
<td>83.10 (b)</td>
</tr>
<tr>
<td>Clausena anisata</td>
<td>Rutaceae</td>
<td>Sesadua, Samanòbere, Duawonsi, Ayira</td>
<td>Leaves</td>
<td>47.59 (c)</td>
</tr>
<tr>
<td>Cryptolepis sanguinolenta</td>
<td>Periploaceae</td>
<td>Nibima, Kadze, Gangamau</td>
<td>Root bark</td>
<td>19.68 (j)</td>
</tr>
<tr>
<td>Cnestis ferruginea</td>
<td>Connaraceae</td>
<td>Apòsè, Akitase, Pudaegye</td>
<td>Leaves</td>
<td>18.43 (k)</td>
</tr>
<tr>
<td>Hoslundia opposita</td>
<td>Labiate</td>
<td>Aberewa-ani-nstu, Nunum-</td>
<td>Leaves</td>
<td></td>
</tr>
</tbody>
</table>
1. Results:

- Significant difference among the medicinal plant species using Duncan’s Multiple Range Test and the Principal Component Analysis (PCA).
<table>
<thead>
<tr>
<th>Plant species</th>
<th>PC 1</th>
<th>PC 2</th>
<th>PC 3</th>
<th>PC 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC1</td>
<td>0.080</td>
<td></td>
<td>-0.094</td>
<td>0.390</td>
</tr>
<tr>
<td>CZ1</td>
<td>0.346</td>
<td>-0.016</td>
<td>-0.147</td>
<td>-0.093</td>
</tr>
<tr>
<td>Carb</td>
<td>-0.162</td>
<td>-0.436</td>
<td>-0.054</td>
<td>0.064</td>
</tr>
<tr>
<td>CSrb</td>
<td>-0.405</td>
<td>0.070</td>
<td>-0.120</td>
<td>-0.139</td>
</tr>
<tr>
<td>CFI</td>
<td>0.167</td>
<td>-0.339</td>
<td>0.092</td>
<td>-0.310</td>
</tr>
<tr>
<td>HOI</td>
<td>0.361</td>
<td>0.025</td>
<td>-0.024</td>
<td>-0.201</td>
</tr>
<tr>
<td>LMI</td>
<td>-0.047</td>
<td>0.175</td>
<td>-0.558</td>
<td>0.059</td>
</tr>
<tr>
<td>MMs</td>
<td>0.158</td>
<td>0.078</td>
<td>-0.610</td>
<td>0.070</td>
</tr>
<tr>
<td>ML1</td>
<td>0.169</td>
<td>-0.201</td>
<td>-0.437</td>
<td>-0.381</td>
</tr>
<tr>
<td>OGl</td>
<td>-0.405</td>
<td>0.070</td>
<td>-0.120</td>
<td>-0.139</td>
</tr>
<tr>
<td>PGrb</td>
<td>-0.405</td>
<td>0.070</td>
<td>-0.120</td>
<td>-0.139</td>
</tr>
<tr>
<td>SMl</td>
<td>-0.317</td>
<td>-0.040</td>
<td>-0.089</td>
<td>0.132</td>
</tr>
<tr>
<td>TPwp</td>
<td>0.135</td>
<td>-0.239</td>
<td>-0.068</td>
<td>0.649</td>
</tr>
<tr>
<td>XAf</td>
<td>-0.065</td>
<td>-0.450</td>
<td>-0.127</td>
<td>0.209</td>
</tr>
</tbody>
</table>
They conclude that some of the medicinal plant species can be rated as highly variable more than others.
Medicinal plants variability

- Another example:
- *Mentha longifolia*: The shoots of *M. longifolia* collected during different seasons differed significantly for...
Supervised Pattern Recognition

- Data analysis has become a fundamental task in analytical chemistry due to the great quantity of analytical information provided by modern analytical instruments.
Supervised Pattern Recognition

• Establish a classification model based on experimental data in order to assign unknown samples to a previously defined sample class based on its pattern of measured features.
Supervised Pattern Recognition

• Multivariate classification is one of the basic methodologies in chemometrics and aims in finding mathematical relationships between a set of descriptive variables and a qualitative variable.
Supervised Pattern Recognition

• Is good alternative to other classifying methods i.e. cellular key element... etc
Comparison between different types of coffee as an example

• The more popular types of coffee are: Espresso (strong black coffee), Turkish coffee, Arabic mildly roasted coffee… etc.

• The Caffeine, main content of the coffee, varies depending on the brewing method, variety of seed etc.

• The strength of the coffee is usually interpreted with respect to the taste of the coffee users.
Comparison between different types of coffee as an example

• Method:
• Coffee samples (Arabic coffee and wild coffee) were purchased from the market. The samples have been authenticated by smart coffee drinkers. Water was double distilled and methanol was of mass grade. Formic acid is analytical grade.
Comparison between different types of coffee as an example

- Method:
- Sample preparation: 200 mg commercial coffee of each samples have been extracted three times each with boiling water. The samples were then filtered through wattmann filter paper and 1 ml has been withdrawn through 0.45 filter. Each sample were analysed in triplicate
Comparison between different types of coffee as an example

• Method:
• Analysis: LC-QTOF (Agilent 6540) with C18 Zorbax column (100 mm, 1.8 um particle size) have been used. The samples have eluted in triplicate using the mobile phase consisting of 100% methanol (A) and 1% formic acid in water (B). The gradient was 1:1 at zero time for 0.5 min and ramping up to 95 % of A. The results were analysed using Mass hunter software 5.0 and multivariate analysis was done using MPP.
Comparison between different types of coffee as an example

• Results:
• PCA (Fig 1) shows clearly the different pattern of Arabic coffee (AC) and Wild coffee (WC). This difference is presented in terms of the different compounds present in each type of coffee (Fig 2). Analysis of these compounds revealed a list of potential differentiating compounds listed in Fig 3.
Comparison between different types of coffee as an example

- Results: Fig 1
Comparison between different types of coffee as an example

• Results: Fig 2 OPLS
Comparison between different types of coffee as an example

• Results: Fig 3
Conclusions

• The study shows clear difference between Arabic coffee and wild coffee in terms of certain chemical constituents, caffeine is not one of them.

• The taste has no correlation with any biological active chemical constituents.
Conclusions

• Multivariate analysis may help in authentication of herbal samples provided that the preparation method is standardized and there is a strict GACP guidelines.

• The problem what standard sample should be regarded as standard.

• This study showed that caffeine has no role in determining the taste strength.
Conclusions

• Supervised pattern recognition may help not only in the authentication of the herbal samples but also in the quality of the preparation.
Let Us Meet Again

We welcome you all to our future conferences of OMICS Group International

Please Visit:
www.omicsgroup.com
www.conferenceseries.com
www.proteomicsconference.com