About OMICS Group

OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of making the information on Sciences and technology ‘Open Access’, OMICS Group publishes 400 online open access scholarly journals in all aspects of Science, Engineering, Management and Technology journals. OMICS Group has been instrumental in taking the knowledge on Science & technology to the doorsteps of ordinary men and women. Research Scholars, Students, Libraries, Educational Institutions, Research centers and the industry are main stakeholders that benefitted greatly from this knowledge dissemination. OMICS Group also organizes 300 International conferences annually across the globe, where knowledge transfer takes place through debates, round table discussions, poster presentations, workshops, symposia and exhibitions.
OMICS Group International is a pioneer and leading science event organizer, which publishes around 400 open access journals and conducts over 300 Medical, Clinical, Engineering, Life Sciences, Pharma scientific conferences all over the globe annually with the support of more than 1000 scientific associations and 30,000 editorial board members and 3.5 million followers to its credit.

OMICS Group has organized 500 conferences, workshops and national symposiums across the major cities including San Francisco, Las Vegas, San Antonio, Omaha, Orlando, Raleigh, Santa Clara, Chicago, Philadelphia, Baltimore, United Kingdom, Valencia, Dubai, Beijing, Hyderabad, Bengaluru and Mumbai.
Development of aptamer based HIV-1 entry inhibitor prophylactic drugs

Grace London
CSIR, Biosciences
Emerging Health Technologies Platform
Pretoria, South Africa

2nd International Conference and Exhibition on Pathology
Properties of Aptamers

➤ Aptamers are nucleic acids with properties of antibodies

➤ Generated by simple in vitro process called SELEX

➤ High affinity and specificity

➤ Small in size and fold in 3-D structure (e.g., RNA aptamers)

➤ Resistant to nucleases and chemically stable

➤ Low toxicity and non-immunogenic

Joubert et al., 2010
Applications of aptamers

- Marro et al., 2005
- Rotherham et al., 2012
- Rusconi et al., 2004

Green et al., 2001

Aptamers as diagnostics

Aptamers as therapeutics

High-throughput screening

Target validation

Aptamer

Anti-gp120 aptamers as HIV-1 entry inhibitors

Apt 1 bind gp120 trimer

Apt 2 bind recombinant gp120

Apt = aptamer

Khati et al., 2003; Cohen et al., 2008
HIV-1 entry and inhibitors

Outline of the study

1. Evaluate efficacy of anti-gp120 aptamer against HIV-1 subtype C
2. Test toxicity
3. Map “aptatope’s” on HIV-1 gp120
4. Test synergy with other entry inhibitors
Aptamers inhibit entry of HIV-1 subtype C Env pseudoviruses

<table>
<thead>
<tr>
<th>Env clone</th>
<th>Stages of disease</th>
<th>Geographic location</th>
<th>Apt 1</th>
<th>Apt 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP45.2.00.G3</td>
<td>Acute/early</td>
<td>S.Africa</td>
<td>2.6</td>
<td>0.3</td>
</tr>
<tr>
<td>ZM233M.PB6</td>
<td>Acute/early</td>
<td>Zambia</td>
<td>4.9</td>
<td>0.1</td>
</tr>
<tr>
<td>ZM249M.PL1</td>
<td>Acute/early</td>
<td>Zambia</td>
<td>>50</td>
<td>0.6</td>
</tr>
<tr>
<td>ZM53M.PB12</td>
<td>Acute/early</td>
<td>Zambia</td>
<td>20.1</td>
<td>0.8</td>
</tr>
<tr>
<td>ZM109F.PB4</td>
<td>Acute/early</td>
<td>Zambia</td>
<td>14.1</td>
<td>>50</td>
</tr>
<tr>
<td>ZM197M.PB7</td>
<td>Acute/early</td>
<td>Zambia</td>
<td>19.2</td>
<td>0.4</td>
</tr>
<tr>
<td>CAP210.200.E8</td>
<td>Acute/early</td>
<td>S.Africa</td>
<td>2.2</td>
<td>0.1</td>
</tr>
<tr>
<td>ZM135M.PL10a</td>
<td>Acute/early</td>
<td>Zambia</td>
<td>2.8</td>
<td>NT</td>
</tr>
<tr>
<td>ZM214M.PL5</td>
<td>Acute/early</td>
<td>Zambia</td>
<td>17.6</td>
<td>0.2</td>
</tr>
<tr>
<td>DU172.17</td>
<td>Acute/early</td>
<td>S.Africa</td>
<td>12.1</td>
<td>0.6</td>
</tr>
<tr>
<td>DU156.12</td>
<td>Acute/early</td>
<td>S.Africa</td>
<td>3.2</td>
<td>0.6</td>
</tr>
<tr>
<td>DU422.1</td>
<td>Acute/early</td>
<td>S.Africa</td>
<td>>50</td>
<td>0.3</td>
</tr>
<tr>
<td>CAP08.2.00.F6</td>
<td>Acute/early</td>
<td>S.Africa</td>
<td>1.2</td>
<td>1</td>
</tr>
<tr>
<td>CAP61.2.00.F10</td>
<td>Acute/early</td>
<td>S.Africa</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>CAP63.2.00.A9U</td>
<td>Acute/early</td>
<td>S.Africa</td>
<td>1.7</td>
<td>0.1</td>
</tr>
<tr>
<td>CAP84.2.00.32J</td>
<td>Acute/early</td>
<td>S.Africa</td>
<td>29.1</td>
<td>>50</td>
</tr>
<tr>
<td>CAP85.2.00.09J</td>
<td>Acute/early</td>
<td>S.Africa</td>
<td>16.1</td>
<td>0.1</td>
</tr>
<tr>
<td>CAP239.2.00.03J</td>
<td>Acute/early</td>
<td>S.Africa</td>
<td>7.1</td>
<td>0.2</td>
</tr>
<tr>
<td>RP1.12</td>
<td>Acute/early</td>
<td>S.Africa</td>
<td>4.7</td>
<td>0.6</td>
</tr>
<tr>
<td>RP4.3</td>
<td>Acute/early</td>
<td>S.Africa</td>
<td>>50</td>
<td>0.5</td>
</tr>
<tr>
<td>COT6.15</td>
<td>Chronic</td>
<td>S.Africa</td>
<td>0.9</td>
<td>>50</td>
</tr>
<tr>
<td>COT9.6</td>
<td>Chronic</td>
<td>S.Africa</td>
<td>6.1</td>
<td>>50</td>
</tr>
<tr>
<td>DU151.2</td>
<td>Acute/early</td>
<td>S.Africa</td>
<td>>50</td>
<td>>50</td>
</tr>
<tr>
<td>DU123.8</td>
<td>Acute/early</td>
<td>S.Africa</td>
<td>>50</td>
<td>>50</td>
</tr>
<tr>
<td>Conc</td>
<td>Acute/early</td>
<td>S.Africa</td>
<td>3</td>
<td>0.1</td>
</tr>
<tr>
<td>CAP288.2.00.5</td>
<td>Acute/early</td>
<td>S.Africa</td>
<td>9.5</td>
<td>0.3</td>
</tr>
<tr>
<td>CAP206.2.00.E8</td>
<td>Acute/early</td>
<td>S.Africa</td>
<td>3.8</td>
<td>0.7</td>
</tr>
<tr>
<td>CAP244.2.00.D3</td>
<td>Acute/early</td>
<td>S.Africa</td>
<td>2.3</td>
<td>0.4</td>
</tr>
<tr>
<td>RP6.6</td>
<td>Acute/early</td>
<td>S.Africa</td>
<td>3.7</td>
<td>0.4</td>
</tr>
<tr>
<td>CAP88.2.00.B6J</td>
<td>Acute/early</td>
<td>S.Africa</td>
<td>1.6</td>
<td>1</td>
</tr>
<tr>
<td>IN8382.25</td>
<td>Acute/early</td>
<td>India</td>
<td>16.2</td>
<td>NT</td>
</tr>
<tr>
<td>IN0013096.211</td>
<td>Acute/early</td>
<td>India</td>
<td>0.2</td>
<td>NT</td>
</tr>
</tbody>
</table>

- **Apt 1** = inhibited 84% viruses
- **Mean IC₅₀** 6.6 ± 8.1 nM
- **Apt 2** = inhibited 79% viruses
- **Mean IC₅₀** 0.4 ± 0.3 nM

50 nM = No inhibition
NT = Not titred
* viruses using CXCR4 coreceptor

<table>
<thead>
<tr>
<th>% viruses neutralized</th>
<th>Mean IC<sub>50</sub> (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>84%</td>
<td>6.6 ± 8.1</td>
</tr>
<tr>
<td>79%</td>
<td>0.4 ± 0.3</td>
</tr>
</tbody>
</table>

0.1-5 nM
5-25 nM
25-50 nM
>50 nM
Aptamers inhibit entry of HIV-1 subtype C PBMC

PMBC = 80 ± 11.8 nM

Mufhandu, H et al., J. Virol. (2012), 86(9), pp. 4989
Aptamers inhibit entry of HIV-1 subtype C in Macrophages

Mean IC$_{80}$ in MDM = 23 ± 10.4 nM

Aptamers exhibit no cytotoxicity

TZM-bl MTS based-assay

PBMC MTS based-assay

% Cell Viability

www.csir.co.za
Aptamers interact with conserved residues on gp120

Aptamers bind to amino acids within the coreceptor (CoRbs) CCR5 binding site

Mufhandu, H et al., J. Virol. (2012), 86(9), pp. 4989
Synergy of aptamers with HIV-1 entry inhibitors

Synergism: CI = 0.3 – 0.9
Antagonism: CI = >1
Anti-gp120 RNA aptamers are efficacious against HIV-1 subtype C isolates (concentrations in nanomolar).

- They interact with conserved residues on gp120, delay virus resistance.
- Not toxic in different cell types.
- Synergy with other entry inhibitors, combination therapy with other drugs.
- Anti-gp120 aptamers can be developed as entry inhibitor drugs.
Acknowledgements

Collaborators

• NICD (Lynn Morris)
• UKZN (Alexander Pym)
• UCT & GSH (B. Mayosi)
• University of Oxford, UK (William James)
• The Scripps Research Institute, USA (Dennis Burton)

Reagents

• Los Alamos National Lab, USA (Basil I Swanson)
• IAVI
• NIH AIDS Reagents

Funding

www.csir.co.za
Let Us Meet Again

We welcome you all to our future conferences of OMICS Group International

Please Visit:
www.omicsgroup.com
www.conferenceseries.com
http://pathology.conferenceseries.com/