Life extension, upgrade and repair of welded structures – Towards the use of High Strength Steels

Zuheir Barsoum

KTH – Royal Institute of Technology, Stockholm, Sweden

Khalifa University, Abu Dhabi, UAE

1st World Congress and Exhibition on Construction & Steel Structures, Nov 16-18 2015, Dubai, Crown Plaza.

Contact: <u>zuheir@kth.se</u>, <u>zuheir.barsoum@kustar.ac.ae</u>

Fatigue of Welded Structures

Parent Material Compared to Welded Joints

Welds have much lower strength than the base materials due to:

- Stress concentration due to *local* weld shape and joint geometry
- Weld defects and flaw which leads to early crack propagation
- High tensile welding stresses

Improving the Fatigue Strength of Welded Structures

Good design practice

- Minimize fatigue loads, e.g. by avoiding resonance & vibration
- Use low SCF joints
- Avoid corrosion
- Place welds in areas with low stress

High quality fabrication

- Good choice of plate and weld materials and process
- Good weld penetration, groove geometry
- Weld quality inspection w. correlation to fatigue life

Improvement techniques

- Applied during fabrication
- Post fabrication treatment

- Local stress peaks are reduced
- Lower SCF
- Surface quality is improved
- Tensile welding residual stresses are reduced
- High local compressive residual stresses are introduced
- Material work hardening
- Phase changes in weld material gives compressive stresses
- Surface quality is improved
- Lower SCF

Geometry modification techniques

Residual stress techniques

High Frequency Mechanical Impact - HFMI

Example of HFMI devices available worldwide

- ultrasonic impact treatment (UIT)
- ultrasonic peening (**UP**)
- ultrasonic peening treatment (**UPT**)
- ultrasonic needle peening (**UNP**)
- pneumatic impact treatment (*PIT*)
- high frequency impact treatment (*HiFiT*)
- Etc...
- > 90 Hz

High Frequency Mechanical Impact - HFMI

Example of HFMI indenter sizes and configurations

Typical weld toe profile in the as-welded condition and following HFMI treatment

Nominal stress : Existing IIW FAT classes

f _v (MPa)	longitudinal welds	transverse welds	butt welds
	¹ as-welded, m = 3		
all f _y	71	80	90
	² improved by hammer or needle peening, m = 3		
f _y ≤ 355	90	100	112
355 < f _y	100	112	125

1) Hobbacher, A.: IIW Recommendations for Fatigue Design of Welded Joints and Components., WRC Bulletin 520, The Welding Research Council, New York. (2009)

2) Haagensen, P. J., Maddox, S. J.: IIW Recommendations on methods for improving the fatigue lives of welded joints, Woodhead Publishing Ltd., Cambridge. International Institute of Welding, Paris. (2013)

3) Fricke, W.: IIW Recommendations for the Fatigue Assessment of Welded Structures by Notch Stress Analysis, Woodhead Publishing Ltd., Cambridge. (2012)

Some of Assumptions:

- The improvement method covered in these studies is applied to the *weld toe*
- All of fatigue design methods for HFMI improved welds are based on an assumed S-N slope of *m = 5* and fatigue strength improvement factors are defined at *N = 2.10⁶ cycles*

Examples of joints suitable for improvement

Proposed Fatigue Strength Improvement using HFMI

a design recommendation including one fatigue class increase in strength (about 12.5%) for every 200 MPa increase in static yield strength was proposed and shown to be conservative with respect to all available data.

Nominal Stress

Existing IIW FAT classes for as-welded and hammer or needle peened welded joints and the proposed FAT classes for HFMI treated joints as a function of f_v

f _y (MPa)	longitudinal welds	cruciform welds	butt welds	
	as-welded, m = 3			
all f _v	71	80	90	
	improved by hammer or needle peening, m = 3			
f _y ≤ 355	90	100	112	
355 < f _y	100	112	125	
	im	proved by HFMI, m =	5	7
235 < f _v ≤ 355	112	125*	140*	From study
355 < f _v ≤ 550	125	140	160	dy t
550 < f _v ≤ 750	140	160	180	}_ this
750 < f _v ≤ 950	160	180*	-	
950 < f _v	180	-	-	

* no data available

Loading effects

- the guideline states that the techniques are not suitable for R > 0.5 or when $S_{max} > 0.8 f_{y}$
- Stress ratio: $k_R = 1.075 - 0.75 \cdot \text{R}$ for $0.1 \le \text{R} \le 0.5$ $k_R = 1.0$ for R < 0.1

• Minimum reduction in the number of FAT classes in fatigue strength improvement for HFMI treated welded joints as presented in previous Figure based on R ratio.

R ratio	Minimum FAT class reduction	
R ≤ 0.15	No reduction due to stress ratio.	
0.15 < R ≤ 0.28	One FAT class reduction	
0.28 < R ≤ 0.4	Two FAT classes reduction	
0.4 < R ≤ 0.52	Three FAT classes reduction	
0.52 < R	No data available. The degree of improvement	
	must be confirmed by testing	

Proposed Fatigue Strength Improvement using HFMI

Loading effects and variable amplitude loading

- the guideline states that the techniques are not suitable for R > 0.5 or when $S_{max} > 0.8 f_v$
- Limitation on maximum constant amplitude stress range, Δσ, that can be applied to a weld in order to claim benefit from HFMI treatment (in MPa)

Proposed Fatigue Strength Improvement using HFMI

The influence of steel strength :

• Computed cycle limit below which HFMI is not expected to result in fatigue strength improvement as a function of steel strength.

f _y (MPa)	N (cycles)	
< 355	72 000	
355 – 550	30 000	
550 – 750	12 500	
> 750	< 10 000	

Proposed Procedures and Quality Assurance Guidelines for HFMI

Procedures

Operator Training:

- 1-2 days of operator training
- identification of fatigue critical regions is also important to avoid extra costs and treatment

Weld Preparation:

- weld profile quality level B in ISO 5817 : Undercuts, Excessive overfill, Excessive concavity and Overlaps.
- proper weld profile

Safety Aspects:

- less noise and vibration
- eight hour work shift

Proposed Procedures and Quality Assurance Guidelines for HFMI

<u>Quality control (Qualitative Measures)</u>:

Potential introduction of crack-like defect due to HFMI treatment of a weld with a steep angle or with too large of an indenter

Resulting groove for a properly treated (left) and improperly treated weld toe (right)

Micrographs of the induced crack-like defects due to improper HFMI treatment

Proposed Procedures and Quality Assurance Guidelines for HFMI

<u>Quality control (Qualitative Measures)</u>:

- No thin line representing original fusion line should be visible the groove , No individual strikes visible

defect-free groove but with individual indenter strike still visible indicating the need for additional passes

Industrial Applications

bhpbilliton TLP Neptune

Fatigue hot-spots found in brackets supporting the TLP pontoons: HFMI successfully applied

Fatigue hot-spots found in six FPSO cargotanks, Bulkhead and bracket welds treated by HFMI rope access team ¹⁶

Conclusions

- The design proposal is considered to apply to *plate thickness 5 to 50 mm* and for *235 MPa* $\leq f_v \leq 960 MPa$.
- Fatigue resistance curves for HFMI improved welds are based on an assumed S-N slope of m = 5 in the region 1.10⁴ ≤ N < 1.10⁷ cycles and, for variable amplitude loading, m' = 9 for 1.10⁷ ≤ N.
- Stress assessment may be based on *nominal stress, structural hot spot stress or effective notch stress* using stress analysis procedures as defined by the IIW.
- The design proposal includes proposals for the 1) effect of material strength, 2) special requirements for low stress concentration weld details, 3) high R-ratio loading conditions and 4) variable amplitude loading.
- A companion document concerning relevant equipment, proper procedures, material requirements, safety, training requirements for operators and inspectors, quality control measures and documentation has also been prepared and is published in this same issue.
- Succesful validation have been shown on larger industrial welded structures

Recent Publications

HFMI Guidelines Publications (Welding in the World, 2013 and 2014)

Author's pe	rsonal copy	
Wald World (2013) 57:803-822 DOI 10.1007/w40194-013-0075-x		Weld Woodd (2014) 58:19-28 DOI (0.10073440104-015-0077-8
RESEARCH PAPER		RESEARCH PAPER
Fatigue strength improvement of by high-frequency mechanical im assessment guidelines Gary B. Marquis - Eava Mikkola - Halid Can Yidirim - Zakair Barsoum Received 11 Monto 2013 (Accepted 20 May 2013 /74/8/ibbd edfac= f intervisional Italian of (Webba 2015	pact: proposed fatigue	Fatigue strength improvement of steel structures by high-frequency mechanical impact: proposed procedures and quality assurance guidelines Gary Marquis - Zabeir Barsonn
Abstract In the past decade, high-frequency mechanical impact (HFMI) has significantly developed as a reliable, effective, and user-friendly method for post-weld farigue	sectors. The proposal can also be used as a means of verify- ing the effectiveness of new equipment as it comes to the market.	Received: 18 March 2013 /Accepted: 29 May 2013 /Published cellure: 16 Anne 2013 © International Institute of Welding 2013 Abstract High-Broquency mechanical impact (HFPM) has received an enclude of Selection and one formilie method for
strength improvement technique for welded structures. During this time, period 46 documents on HFMI technology or fatigue improvements have been presented within Commission XIII of the International Institute of Welding.	Keywords High-frequency mechanical impact (HFMI) - Weld too improvement - Fatigue improvement - High-strength steels - Fatigue design - Hot spot stress - Effective notch stress	emerged as a seliable, effective, and user-friendly method for post-weld fuige stempth improvement technique for welded structures. During the past decade, 46 documents on HFMI iedanology for futiges improvements have been presented within Commission XIII of the International Institute of 1 Introduction
This paper presents one possible approach to farigue assess- ment for HFM-improved joints. Stess analysis methods based on nominal stress, structural hot spot stees, and effec- tive notch stress are all discussed. The document considered the observed exts heartfit that has been experimentally ob- aerved for HFM-instel high-attength steels. Some observed extremely approximate the stress of the stress of the stress extremely steels.	Nomenclature D Duringe sum for variable amplitude loading f _x Yield strength TII IIW fuligue class, i.e., the nominal stress range in magapascals corresponding to 95 % survival proba- bility at 2+10 ⁶ evoles to failure 6 affecter to variable	Webling (IFW). This paper presents an verview of the leasons learned concerning appropriate HFMI procedures and quality look and the sournace matures. Due to differences in HFMI tools and the wide variety of potential applications, centrin details of proper teenment procedures and quantitative quality control mensures are presented generally. Specific details should be documented are presented generally. Specific details should be documented
vations and proposals on the effect of loading conditions like high mean atress futigue cycles, variable amplitude loading, and large amplitude/ow cycle futigue cycles are given. Special considerations for low atress concentration details are also given. Several futigue sasesament examples are owided in an generation. A commission puer base also been	mity is 2×10° cycles to hance (a society variance with 10-15 % increase in stress between steps) $\beta(r)$ ITW thickness correction factor k_{∞} Strength reduction factor for stress moto, $[\pm k_{\infty} > 0$ K Stress concentration M Steps of the $S > N$ line $ \times 10^4 \pm N < 1 \times 10^7$ cycles	in an HFMI procedure specification for ends structure being testent. It is hopef that this guideline will provide a stimulate to researchess working in the field to test and constructively criticize the proposal made with the gui of developing inter- national guideline selevant to a writely of HFMI technologies
expared concerning HFMI equipment, proper procedures, afety, mining, quality control measures, and documentation as also been prepared. It is hoped that these guidelines will evolve stimulus to researchers working in the field to test	m [*] Slope of the S−N line 1×10 ² cycles≤N L. Characteristic length used to compute <i>f</i> (<i>r</i>) N. Futigue cycles S tress ratio	and applicable to many industrial senses. A comparison docu- ment presents a faigue design proposal for FDFM luminent of welded steel statictures. The proposal is considered to apply to attent statictures of plate Indicates on 45 to 50 mm and for yield stream and the statictures in the weld to region and induce com- strength ranging from 251 to 90 MPA. Stress assessment may for the presidure attention to the stress of the weld to region and induce com- pressive residual stress in the weld to region and induce com- pressive residual stress in the weld to region and induce com- ting the many for 90 MPA. Stress assessment may
and constructively criticize the peoposals made with the goal of developing international guidelines relevant to a variety of HFMI technologies and applicable to many industrial	t Plate thickness X_{ij} Improvement factor in life for HFMI treated welds at Δx^{-} equal to the FAT class of the as-welded joint: $N_{i}=X_{ij}+2\times 10^{6}$ Weld use reafins	be based on nominal stress, structural hot spot stress, or effic- tive notch alress. Information on how to implo- ment the four improvement technologies, namely good work practices, maining, safety, and quality assumate.
De. III 42953, necessated for publication by Controlssion XIII Valigue of Welded Components and Structures." J. B. Macquis (G2) - E. Milkales - B. C. Yildrin Japarimani of Applied Mechanica, Asilo University, Japon Finhand	ρ Weld use refines σ Steess $\Delta \sigma$ Stress mage Subscripts	Dea. 11%-2295, recommended for publication by Commission XIII "Midges of Weided Components and Structures." G. Marquia (5a) Department (5a)
-enal't gary-marquia@ualio.fl 3. B. Macquis * 2. Benseem XTH-Royal Institute of Technology, Division of Lightweight	er Effective (length) eq Equivalent (stress mage) f Failure (cycles) or ficilitous (weld toe radius)	Leon, Finhed e-mit gayr mayoki@aulia.fl G. Marqu's Z. Bancen Diridan of Ughtweigh Structures, KTI6-Royel builtate of Diridan of Ughtweigh Structures, KTI6-Royel builtate of
Stuciures, Stockholm, Sweden	k Corresponding to the knee point of the S-N curve D springer	Technology, Sixtheirs, Sweden additional strength after other measures have been taken.
		T danka

Thank You for Your Kind Attention!

Questions?