

Euro Food 2015

6/25/2015

Euro Global Summit and Expo on

Effect of Hydrogen Peroxide on Volatile Sulfur Compounds in UHT Milk

Zahir Al-Attabi , Bruce R D'Arcy and Hilton C Deeth

Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod, Sultanate of Oman

School of Agriculture and Food Sciences, University of Queensland, Brisbane, 4072, Australia

2

- * Introduction
- * Objectives
- * Analysis
- * Results & Discussion
- * Conclusion

- Cooked flavour in UHT milk is linked to the volatile sulfur compounds (VSCs), denatured β-lactoglobulin (β-Lg)
- * VSCs (DMS, DMDS, CS₂, MeSH, COS, H₂S, DMTS, DMSO, Me₂SO₂)
- * This off-flavour limits the acceptance of UHT milk
- * Several additives tested (e.g copper, calcium chloride, disodium hydrogen phosphate, sodium iodate/bromate)
- * Not approved by food regulatory agencies in many countries
- * May impart undesirable flavours to milk

- * Why Hydrogen peroxide (H2O2)?
- * H2O2 is an effective milk preservative on its own & in combination with heat (McDoneell *et al.* 2006)
- * H2O2 is a component of LP-system
- * Addition of H2O2 to raw milk, approved by the Codex Alimentarius Commission in 1991 (FAO/WHO 1991)

- * In the USA, H2O2, (GRAS).
- * It can be added to;
- milk (at 0.05%) to make certain types of cheese,
- whey (at 0.04%) & starch (at 0.15%),
- wine and instant tea (Sofos and Busta 1999)
- * FAO permits the addition of H2O2 to milk at 0.05%-0.25% (500-2500mg/L)
- all the H2O2 remaining in the milk after processing must converted by catalase into oxygen and water (Tarhan 1995).

- * In Australia;
- H2O2 is an approved processing aid in food with a maximum permitted residue level of 0.005% (50 mg/L) in the final food (FSANZ 2006).
- * H2O2, sterilizing food packaging materials including UHT milk packages.
- * FDA, limits H2O2 residues to 0.00005% (0.5 mg/L)) in the finished food package (CFR 2003).

- * Aims/study;
- the effectiveness of using H2O2 (10, 50, 100, 200, 300 mg/L) in reducing the levels of VSCs in UHT milk,
- Its effect on β- lactoglobulin denaturation in UHT and batchheated milk

Analysis A. Effect of H2O2 on Sulfur Volatiles Milk sample preparation and H2O2 addition

Bench-top UHT pilot plant

A. Effect of H2O2 on Sulfur Volatiles

Analysis For Volatile sulfur compounds

- * SPME/GC/PFPD
- * GC: Varian CP-3800
- * Sample: 5 mL , 10 mL screw-top vial, fitted with a PTFE-faced silicone septum.
- Fiber: CAR-PDMS, 85 μm (Supelco, Australia)
- *
- Extraction time & temperature: 30 °C /15 min.
- * Triplicate analyses

Analysis For β-lactoglobulin Denaturation

- analysis was performed according to Elliott et al. (2005)
- Sample (1ml)
- Eppendorf tube
- 30 μL of acetic acid (33%) added
- stand for 10 min
- 30 μL of 3.3 M sodium acetate
- centrifuged for 20 min at 4500 rpm
- supernatant removed carefully and filtered through a 0.22 μm Millex filter (Millipore Corporation, Bedford, USA).

• Shimadzu HPLC system with a SPD M10AV UV/Vis detector operated at 205 nm.

- standard of β-lactoglobulin
- Triplicate analyses

Results & discussion A. The effects of H2O2 addition on volatile sulfur compounds

Table 1. Volatile sulfur compounds (μ g L⁻¹) in UHT milk, with H₂O₂ added before and after processing, during 3-d storage

a. H_2S (µg L⁻¹)

H ₂ O ₂	H ₂ O ₂ add	ed before pr	rocessing	H ₂ O ₂ added after processing			
(mg L ⁻¹)	1 d	2 d	3 d	1 d	2 d	3 d	
0	14.73±3.68	0.89±0.09	0.70±0.09	14.7±3.68	0.89±0.09	0.70±0.09	
10	4.06±2.02	0.68±0.12		0.70±0.09	0.59 ±0.00		
50							
100							
200							
300							

✓ Day1, completely oxidized when added either before or after processing, at all concentrations except 10 mg/L H2O2 (Conc. below its threshold value (10µg/L).

 \checkmark H2O2 was more efficient in oxidizing H2S when added at 10 mg/L after processing

b. COS (mg L^{-1})

H ₂ O ₂ (mg L ⁻¹)	H_2O_2 add	led before p	rocessing	H ₂ O ₂ added after processing			
	1 d	2 d	3 d	1 d	2 d	3 d	
0	1.07±0.27	0.25±0.01	0.11±0.00	1.07±0.27	0.25±0.01	0.11±0.00	
10	0.37±0.16	0.26±0.15	0.08±0.02	0.28±0.13	0.12±0.05	0.07±0.01	
50				0.09±0.01			
100				0.05±0.01			
200							
300							

- Completely oxidized when it was added before processing at all concentrations, except for 10 mg/L H2O2 (Day1).
- After processing, COS decreased from 0.28 mg/L at 10 mg/L H2O2 to 0.05 mg/L at the 100 mg/L H2O2
- The addition of 50 mg/L and 100 mg/L H2O2 caused the complete disappearance of COS by day2 when added after processing.

c. MeSH ($\mu g L^{-1}$)

H ₂ O ₂	H_2O_2 add	led before p	rocessing	H ₂ O ₂ added after processing			
(mg L ⁻¹)	1 d	2 d	3 d	1 d	2 d	3 d	
0	2.33±0.04	0.97±0.05	0.51±0.00	2.33±0.04	0.97±0.05	0.51±0.00	
10	1.47±0.12	0.62±0.08		2.12±0.34	0.78±0.05		
50	1.47±0.20			0.90±0.01			
100	1.17±0.17			0.53±0.04			
200	0.23±0.05			0.25±0.07			
300							

- Conc. higher than its threshold value in water (0.2µg/L)
- * Undetectable at 300 mg/L H2O2. on day one
- * MeSH conc. Gradually with H2O2 conc. added either before or after processing
- * Completely oxidized by day two for both additions (before or after), except in the 10 mg/L H2O2 samples where it disappeared by day three.
- * The oxidation rate of MeSH was slightly higher when H2O2 was added after processing.

d. DMS ($\mu g L^{-1}$)

H ₂ O ₂	H ₂ O ₂ add	led before p	rocessing	H ₂ O ₂ added after processing			
$(\operatorname{mg} L^{-1})$	1 d	2 d	3 d	1 d	2 d	3 d	
0	8.54±0.86	6.26±0.50	4.57±0.22	8.54±0.86	6.26±0.50	4.57±0.22	
10	7.66±1.33	6.25±0.07	5.15±0.41 6.68±1.33		6.14±2.14	4.32±1.02	
50	6.40±0.60	4.25±1.30	3.07±0.80	4.93±0.07	3.50±0.44	2.70±0.63	
100	4.94±0.12	2.25±0.32	1.85±0.01	3.12±0.32	1.23±0.42	1.11±0.11	
200	2.24±0.32	0.48±0.05	0.44±0.04	1.02±0.38			
300	1.22±0.40			0.52±0.11			

- * DMS conc. in control sample was 8.54 μ g/L, < threshold values in milk, 20 μ g/L.
- * The DMS conc. gradually decreased as the H2O2 conc. increased, added either before or after
- * The conc. similar in the control sample and the samples with 10 mg/L peroxide even during storage indicating limited oxidation of DMS at low H2O2 concentration.
- * The oxidation rate of DMS was slightly higher when H2O2 was added after processing.

e. $CS_2 (\mu g L^{-1})$

H ₂ O ₂	H_2O_2 add	led before pr	ocessing	H ₂ O ₂ added after processing				
(mg L ⁻¹)	1 d	2 d	3 d	1 d	2 d	3 d		
0	3.29±0.95	1.96±0.40	1.91±0.23	3.29±0.95	1.96±0.40	1.91±0.23		
10	3.25±0.69	4.22±1.62	3.0±0.55	2.53±0.49	2.11±0.34	1.69±0.35		
50	1.04±0.20	0.81±0.20	0.62±0.20	2.09±0.01	1.43±0.30	1.18±0.25		
100	0.61±0.15	0.46±0.11	0.23±0.03	1.96±0.13	1.44±0.15	1.35±0.08		
200	0.38±0.04			1.95±0.16	1.36±0.14	1.23±0.06		
300	0.32±0.00			1.87±0.03	1.33±0.24	1.1±0.14		

- * The CS2 conc. control sample was 3.29 μg/L , < threshold values in milk 100-1000 μg/L
- * H2O2 was more effective in oxidizing CS2 when added before processing than after processing
- * At the 200 mg/L & 300 mg/L H2O2 concentrations, CS2 was undetectable on days two and three.

f. DMDS ($\mu g \ g \ L^{-1}$)

H ₂ O ₂	H_2O_2 add	led before p	rocessing	H ₂ O ₂ added after processing			
(mg L ⁻¹)	1 d	2 d	3 d	1 d	2 d	3 d	
0							
10							
50							
100	0.06±0.02	0.13±0.02	0.12±0.00				
200	0.16±0.02	0.18±0.01	0.18±0.01				
300	0.19±0.01	0.17±0.00	0.17±0.00				

* Not detected in the control UHT milk

- * Produced when the H2O2 was added before processing at conc. of 100, 200 and 300 mg/L
- Conc. below the threshold value in milk (21µg/L)
- * It is presumed that the DMDS was formed from MeSH through oxidation by H2O2.
- * No DMDS was generated when the peroxide was added after processing.

H ₂ O ₂ added (mg L ⁻	H ₂ O ₂ added before heating, measured on							H_2O_2 a	dded a measui	fter he red on	eating,	
1)	0 h	1 d	2d	3 d	4 d	7 d	4 h	1 d	2d	3 d	4 d	7 d
10							1					
50	10	1					30	6	1			
100	40	4	1				50	30	3	2		
200	120	40	20	6	3		150	40	30	30	20	9
300	150	60	40	30	60	30	210	150	100	90	90	90

Table 3. H₂O₂ residues (mg L⁻¹) in UHT milk following addition before and after processing

✓ The residues detected when the H2O2 was added after processing were higher than when H2O2 addition was made before processing

✓ This can be attributed to the heat treatment, since H2O2 can be removed from milk by heating and prolonged storage (Mishra *et al.* 1985).

B. The effects of H2O2 on whey proteins (A) UHT Milk

Table 4 Whey protein denaturation in UHT milk with and without H2O2 added before and after processing.

	β-lactoglobulin d	enaturation	α-lactoalbumin denaturation(%)			
Milk samnle	(%)					
wink sample	H_2O_2	H_2O_2	H_2O_2	H_2O_2		
	added before	added after	added before	added after		
UHT control	95.9	95.9	78	78		
UHT + 10 mg/L H_2O_2	94.2	95	63	73		
UHT + 50 mg/L H_2O_2	99.3	97.8	78	83		
UHT + 100 mg/L H_2O_2	99.6	97.7	89	85		
$UHT + 200 \text{ mg/L } \text{H}_2\text{O}_2$	99.5	98.1	100	96		
$UHT + 300 \text{ mg/L } \text{H}_2\text{O}_2$	100	97.9	100	100		

Overall, as for β -lactoglobulin, α -lactalbumin was denatured more when H2O2 was added before processing than when added after processing.

B. The effects of H2O2 on whey proteins (B) Batch-Heated Milk

Table 5 β -Lactoglobulin denaturation (%) in batch-heated milk without and with H2O2 added before and after processing

Processing Conditions	Control No	50 m H ₂ C	ng/l D ₂	100 mg/L H ₂ O ₂		200 mg/L H ₂ O ₂		300 mg/L H ₂ O ₂	
	H_2O_2	Before	After	Before	After	Before	After	Before	After
80 °C, 1 s	40	30	40	55	32	58	41	70	45
80 °C, 60 s	49	42	47	62	43	65	46	73	53
80 °C, 240 s	69	63	70	72	70	80	72	87	73
80 °C, 360 s	79	72	77	80	77	88	80	94	83
80 °C, 600 s	89	84	90	88	91	89	90	97	92
80 °C, 1200 s	98	96	97	96	98	98	98	99	98

The addition of H2O2 after heating caused less denaturation at the shorter holding times (i.e. 1 s & 60 s) than addition before heating except at 50 mg/L H2O2 where it had minimal effect at all holding times as well as less denaturation compared to the control

- * Low concentrations of H2O2 (10 mg/L or 50mg/L) were sufficient to reduce the level of VSC in the UHT milk under the processing conditions used.
- * One of the major contributors to the cooked flavour, H2S, was completely eliminated or reduced to well below its flavour threshold value.
- * Low conc. of H2O2 had no effect on, or reduced, β-lactoglobulin denaturation when added after or before processing, respectively.
- The addition of H2O2 could be a practical solution to the prevention or alleviation of cooked flavour development in UHT milk
- * However, the levels of H2O2 addition must be within the range permitted by the relevant regulatory jurisdiction.