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Absorption spectroscopy: The case of methane

1.65 um Q 2.31 um

O

Stretching
Overtone

Stretching
+ Bending

1E-14 5

Stretching
Fundamental

Bending
Fundamental

1E-15
1E-16;
1E17;
1E-18;
1E-19;
1E-20
1E-21;
1E-22

1E-23]
1

Line strength (cm™.molecules™.cm?)

CH

2 3 4 5 6

A (pm)
(Hitran database)

7

/

8

9 10

3.31 um (Mir Infrared):
. Fundamental vibration
. Maximum of absorption

2.31 pm:
. Linear combination of vibrations
. Absorption 40 times weaker

1.65 um (Near Infrared):
. Overtone of 3.31 um vibrations
. Absorption 200 times weaker



Some interesting ranges for other hydrocarbons

Transmittivity
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(Chemistry WebBook, NIST)

Methane:
Peak at 3.31 um

Ethane:
Half maxima at 3.28 um
and 3.49 um

Propane:
Half maxima at 3.31 uym
and 3.51 um

Acetylene:
2 peaks at 3.03 and 3.06 ym

The 3.0-3.1 um range is interesting for Acetylene sensing

The 3.3-3.4 um range is interesting for natural gas sensing



A History of GalnAsSb/AlGa(In)AsSb Laser diodes

1980: DH laser at 1.8 um in pulsed mode at 20°C (NTT, S. Kobayashi)

1988: DH laser at 2.0 um in cw mode at 20°C (loffe, A. Baranov)

1988: DH laser at 2.34 um in cw mode at 20°C (Lebedev, A. Bochkarev)

2004: QW laser at 3.04 um in cw mode at 20°C (Univ. Munich, C. Lin)

2005: QW laser at 3.26 pm in pulsed mode at 20°C (Univ. Munich, M. Grau)
2010: QW laser at 3.40 um in cw mode at 20°C (S. Univ. New York, T. Hosoda)

Soichi Kobayashi 18 ™~ T=20°C
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The history of mid-infrared laser diodes can be summarized as a race toward long wavelengths



Mid Infrared lasers: Spectroscopic applications

QW DFB at 3.06 um:
For measuring C,H, in
C,H,

(polyethylene

plants, 40% of

@I.aééilgﬁgene et al.

Phot. Tech. Lett. 22-
15, 1084 (2010)
U. Montpellier + Nanoplus

QW DFB at 3.37 um:
Useful for measuring
CH, and C,H,
(portable detectors
able to discriminate
between naturally
occuring methane and
natural gas)

L. Naehle et al.

Electron. Lett. 22, 47-1
(2011)

U. Montpellier + Nanoplus

line strength [cm/molecule]

x 107"

—— CH,

\ — CH,
— CH,(x1D)
— CH (x10)

: Y
3400 3500
wavelength [nm]

GMI - DPIR
(device at 3.37 um was a prototype)

3600

Siemens Laser Analytics - LDS 6

Requirement for a portable
detector: Pyec <1 W

With a DFB at 3.37 um at 10°C :
Py,=0.15Ax 1.6 V + 0.1 W (p-Peltier)

=0.34 W



Record Threshold Current Densities (J)

10000 -

Results by:
1000 - Turner 1998 (50 A/cm?at 2.05 um )

Vizbaras 2011 (120 A/cm?at 2.6 um)

Jth (A/cm?)

Belenky 2011 (545 A/cm? at 3.3 um)

100 -
] Vizbaras 2012 (1450 A/cm? at 3.7 um)

...and many others...
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From 2.05 pm to 3.7 um, Jy, is multiplied by 30 !



Best Characteristic Temperatures (T,)

3
Wavelength (um)

At 2.3 um, T, equals 95 K but plummets to 25 K at 3.3 pm !




Searching for the culprit in degradation of performances 10
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The Auger recombination coefficient C is multiplied by 44 from 2.3 um to 3.54 um in bulk materials

Auger is the most likely culprit !



Why does Auger increase at long wavelength (small E,)? u

E
. Auger coefficient depends on an activation energy, E: C=C, -exp( k;]

. The activation energy E, is proportional to the bangap energy E:

CHCC m CHLH m
E, = —-|'E E, = L - E
+m 8 2-m,, +m_ —m 8
M, =1y, pp T =,

15 = Mo (E,-A,) if E, 2A,
2-m, +m.—m,_

. In the CHCC process, E_ is the minimal possible kinetic energy of the hole involved in the process:
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Small E; => Small E,



What is the value of the activation energy ?

. Calculated values for lasers at 2.6 um made from GalnAsSb:

m
lattice matched GalnAsSb (such as in a heterostructure laser) : E."°¢ = (—c]Eg =0.040eV
E, = 0.47 eV, m_ = 0.025 m,, my,, = 0.270 m, m. +m,

Calc. CHCC
+1.5 % strained GalnAsSb (such as in a QW laser) : E." =l
mhh - 0044 mo

Rq:ES™ =0.725eV  E;™" =ruled out because E, <A,

Strain increases the activation energy and allows the operation of QW lasers in the mid-infrared

. Experimental values for QW lasers at 2.3 um and 2.6 um made from GalnAsSb:

1/T (K?
(<) D. Garbuzov et al.

Appl. Phys. Lett. 74, 2990 (1999)

0.0025 0.0027 0.0029 0.0031 0.0033 0.0035 0.0037

in QW lasers
emitting in the mid-infrared
2.6 um
\2.3 um

CHCC is the most likely process

Cauger (a.u.)

0.8




How does Auger impact the threshold current ?

Threshold current density:

-N_-L

th:q N w'(ANth+BNth2+CNth3)
Ur

. N,,: number of quantum wells (typically, 2)
. L,,: thickness of quantum well (= 10 nm)
. M;: internal quantum efficiency (= 75 % at 2.3 pm)
. A: monomolecular recombination coefficient (= 1.108 s'"at 2.3 pm)
. B: radiative recombination coefficient (= 4.10-1° cm3.s' at 2.3 um)
. C: Auger recombination coefficient (= 2.10%8 cmb.s'" at 2.3 um)

J

Threshold carrier density: Transparency carrier density: Effective carrier density:
o +o _Ne Ny m,- kT m,, - kT
N, =N, -exp| —= Ne N, N, =—5 N, =—25

; 7 g, e °+te = - L, - L,
. . _ 0.070 9.E+17
- Ny: transparency carrier density (= 3.10'" cm=at 2.3 um) |, -oerc.oos e
. a;: internal loss (= 5 cm™ at 2.3 pm) o050 | .y
. O,,: mirror loss (= 12 cm™ for a 1 mm-long diode) g 00w | T sear
(= -1 ¢ 0.030 | 5 4E7)
. 9o (=30 cm™) . a7
. g

The threshold current density depends on ‘ ‘ 9 I

10 parameters | ew | e




A quantity proportional to the radiative current density 14

Spontaneous emission observed from the tilted facet of a laser emitting at 2.38 um below threshold:

2500
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Spontaneous emission rate: 7, (A) =K1 (1)1

Integrated spontaneous emission rate: R = Ew Fopon (A) - dA

=B-N*

The integrated spontaneous emission rate

Rspon IS proportional to J,,4 = q N,, L, BN2!




In search of the A, B, C coefficients

We have: ./R. =k-N

spon

J = k'-(AN +BN*+CN 3) Let's normalize /Rpon
2 3 so that /R =1 at threshold
Therefore: — 2 = n AN+ BN+ CNT _ k"(A+BN +CN?) e

\ Ropon N

J
-Rspon
3.23 um J Rspon is €quivalent to plotting
1000 - A+ BN + CN? as a function of N

Plotting as a function of
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Determining the proportion of Auger at threshold

There are many things to be learned from the parabolas:
. For example, the proportion of the Auger recombination current at threshold:

Lambda (um) Parabola (A/cm?) Jth (A/cm?) JAuger(A/cm?) JRad (A/cm?) JMono (A/cm?) Proportion of Auger
2.38 y =33x"+87x+6 126 33 87 6 26%
2.83 y=147x> + 119x + 8 275 147 119 8 54%
3.23 y= 653x% + 91x + 272 1017 653 91 272 64%

. And more than that, the value of the A, B & C coefficients !
...because the transparency

carrier density N, depends only
on the electron and hole masses

Jin c’depends on 10 parameters, J = q-N,-L, -(AN” +BN.? +CN”3)
Let’s use J;, instead... 7,
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Determining the A, B, C coefficients

After calculating N,,, we can determine A, B, C:

B (cm3.s-1) C(cm6.s-1)

Lambda (um)

Jtr (A/cm?) JAuger(A/cm?) JRad (A/cm?) JMono (A/cm?) Ntr (cm-3) A (s-1)

From 2.4 to 3.2 um, the Auger coefficient is multiplied by 25 in QW lasers

2.38 31 5 24 3 3.3E+17 | 4.5E+07 | 1.1E-09 | 6.8E-28
2.83 52 19 29 4 2.9e+17 | 4.7E+07 | 1.2E-09 | 2.5E-27
3.23 356 153 35 168 2.7E+17 | 1.4E+09 | 1.1E-09 | 1.8E-26
1.00E-25
1.00E-26 ¥ QW 3.23 pm
QW-2.83 pm
"&T 1.00E-27 oW IET
E
O 1.00E-28
1.00E-29 Bulk mafer-a'sz\\‘ .\\.
1.00E-30




Conclusion

We have developped a method based on
recording the spontaneous emission from the tilted facet of a laser

We determined the A, B, C coefficients of mid-infrared quantum well lasers
from our experiments:

. At 2.4 um, the Auger coefficient C equals 6.5E-28 cmS.s™!
.At 2.8 um, C = 2.5E-27 cmSb.s""
.At 3.2 um, C = 1.8E-26 cmS.s™"

This exponential rise explains
the increase of the threshold currents of mid-infrared quantum wells
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