Dark Energy in General Relativity

Yukio Tomozawa Physics Department University of Michigan

Contents

- Acceleration of Universe expansion, dark energy
- Experimental test of General Relativity (GR)
- The Physical Metric (PM)
- Nature of black hole (BH), extended horizon
- Masses of BH merger in GW150914
- Coordinate transformation from PM to FRW (Friedmann-Robertson-Walker) metric
- Inside-acceleration, Outside-deceleration
- The end of the universe expansion

Acceleration of Universe expansion

Image Credits (left to right): Roy Kaltschmidt, LBNL; Homewood Photography; Research School of Astronomy and Astrophysics, Australian National University

The universe expansion is accelerated. Physics Nobel Prizes are given in 2011.

Acceleration

Cosmological constant, Λ

- Acceleration always.
- a(τ): expansion factor
- $[(da(\tau)/d\tau)/a(\tau)]^2=8\pi G\rho/3 + \Lambda/3$, $\Lambda=constant$
- For $\rho=0$, $a(\tau) = A \exp((\Lambda/3)^{1/2} \tau)$

• Accelerating expansion!! $a''(\tau) > 0$

Experimental test of GR Time delay experiment of Solar system

- I. Shapiro et al, Bertotti et al.
- Δt = (r_s /c) ln (r/b) fits the data well (1/10^5 accuracy), where b is the impact parameter and r_s is the Schwarzschild radius (SR hereafter).

r_s = 2Gm/c^2

- The Schwarzschild metric of GR gives the prediction (See Weinberg's Gravitation, p.202)
 Δt = (r_s /c) [ln (r/b) + ½*((r-b)/(r+b))^1/2]
- This does not fit the data.

Lesson in GR

- The Schwarzschild metric is the exact solution of the Einstein equation, but it does not fit the experimental data.
- ds^2=exp(a(r))*dt^2 exp(b(r))*dr^2 r^2*exp(c(r)*dΩ
- If exp(a(r)=exp(c(r)), one gets the correct formula for time delay experiment, Δt=(r_s/c) * In (r/b).

The physical metric (PM)

- $exp(a(r)) = exp(c(r)) = \omega$
- Schwarzschild metric, r' = r * ω ^1/2
- $1-r_s/(r^* \omega^{1/2}) = \omega$
- Solving for r_s/r, one gets r_s/r = $\omega^{1/2} * (1 - \omega)$

This terminates at

R = (3*3^1/2)/2 r_s = 2.60 r_s

- This gives the size of BH, called the extended horizon.
- $\exp(b(r)) = (d(r^*\omega^{1/2})/dr)^{2/\omega} = (2\omega/(3\omega-1))^2$

PM(Inside solution)

• Inside the extended horizon, using the internal solution of the Schwarzschild metric one gets

D (r_s/r) = $\omega^{1/2} (A\omega - 1)$

• Connecting the inside and outside solutions at the extended horizon, R, one gets

A = 2D + 3

- The choice of D > 0, A > 3 makes all the metric functions positive definite.
- $\exp(b(r)) = A^{*}(2\omega/(3A\omega-1))^{2}$
- The inside solution is repulsive. (See the graph in the next page. This is a new feature!)

Physical metric (ω=g_00)

Gravitational redshift at R

• On the surface of BH, i. e. at r = R,

 $g_{00}(R) = 1/3.$

• Then the gravitational redshift at R is

 $1 + z = 1/(g_00(R))^1/2 = 3^1/2 = 1.732$

PM with constant density, ρ [inside]

• For r < R = 2.60 r_s,

 $ω = 1/(B+(8πGρr^2)/3))$ exp(b(r)) = B ω²

- This is a repulsive gravity.
- Connecting ω at r = R, one gets

B = 3 - 2/3 *3^1/2 = 2.615

Nature of BH and Neutron Stars

- The radius is 2.60 times SR. This is a surprise!
- The gravitational red shift at R is $1+z = 1/\omega^{1/2} = 3^{1/2} = 1.732$
- The temperature of BH and NS is very high.
- T ≈ dω/dr
 - outside of R positive temperature
 - at R infinity
 - inside of R negative temperature
 - (higher than any positive temperature)

```
Boltzman Probability ≈ exp(-E/kT)
```

```
For T<0, high E state is more probable.
```

Black hole merger in GW150914

Black hole masses in GW150914

• The numerical simulation indicates the masses of black hole merger to be

- M_2 = 36 (+5, -4) M_0 → M_f = 62 (+4, -4) M_0
- These must be changed to (divided by 2.60), since the size of black hole is increased by 2.60
- M_1 = 11.2 M_0
- M_2 = 13.8 M_0 → M_f = 23.8 M_0

Away from the Merger Contact

- The change of energy by GW emission,
 - $\label{eq:constraint} -dE/dt = F (32G/5c^{5})*(m1 m2 /(m1+m2))^{2} * r^{4} * \omega^{6},$

where $F=(2.60)^2 * (1+z)^2$

is the enhancement factor by the size of BH and the gravitational red shift, $1+z = \sqrt{3} = 1.732$.

 This factor F is good enough to fit the data by smaller masses, m1 = 13.8 and m2 = 11.2 SM.

Coordinate transformation from PM to FRW (Friedman- Robertson- Walker)

• FRW

ds^2=d\tau^2 - a(τ)^2*(d ξ ^2/(1-k ξ ^2) + ξ ^2*d Ω), where k =0, ± 1.

• PM

 $\begin{aligned} ds^{2} &= \omega^{*} dt^{2} - \exp(b(r))^{*} dr^{2} - r^{2}^{*} \omega^{*} d\Omega \\ r &< R, \ \omega &= 1/(B + (8\pi G \rho r^{2})/3) \\ &exp(b(r)) &= B \ \omega^{2}, \quad B = 2.615 \\ r &> R, \ r_{s}/r &= \omega^{1}/2 \ ^{*} (1 - \omega) \\ &exp(b(r)) &= (2\omega/(3\omega - 1))^{2} \end{aligned}$

Coordinate transformation [1]

- $t = t(\tau, \xi), r = r(\tau, \xi)$
- $dt = (\partial t / \partial \tau) d\tau + (\partial t / \partial \xi) d\xi$
- $dr = (\partial r / \partial \tau) d\tau + (\partial r / \partial \xi) d\xi$
- $a(\tau)^* \xi = r^* \omega^{1/2}$
- $\omega(\partial t/\partial \tau)^2 \exp(b(r))^*(\partial r/\partial \tau)^2 = 1$
- exp(b(r))*(∂r/∂ξ)^2 ω*(∂t/∂ξ)^2 = a(τ)^2/(1-kξ^2)
- $\omega^*(\partial t/\partial \tau) (\partial t/\partial \xi) \exp(b(r))(\partial r/\partial \tau) (\partial r/\partial \xi) = 0$

Coordinate transformation [2]

- Eliminating ∂t/∂τ and ∂t/∂ξ, and using the explicit formulae for ω and exp(b(r)), one gets

 (a'(τ)ξ)^2 = 1- kξ^2 -B/(B + (8πGρr^2)/3)
 for r < R, and
 - $(a'(\tau)\xi)^2 = 1 \omega k\xi^2$ for r > R
- The right hand sides of the both equations are positive definite for k < 0 or k=0 or for small value of ξ.

Coordinate transformation [3]

- Differentiating the equations in the previous page wrt τ, one gets
 - a"(τ) = (8 π Gpr/3)/(B + (8 π Gpr^2)/3)^1/2 (1) for r < R, and

a" (
$$\tau$$
) = - (1 – ω)/(2*r* ξ * ω ^1/2) (2)
for r > R

 a"(τ) in Eq. (1) is positive and that in Eq. (2) is negative. These are the results from dω/dr < 0
 for r < R (repulsive) and dω/dr > 0 for r > R (attractive).

Dark energy by PM

- By coordinate transformation from PM to FRW metric, the author has shown that the universe expansion is accelerated inside the extended horizon (R) and decelerated outside R.
- This is the result from the nature of the gravity being repulsive/attractive for inside/outside of R in PM.
- The difference from Cosmological Constant is clear, since the latter gives acceleration everywhere.

The end of the universe expansion [1]

- For simplicity, let us assume k = 0. (The observation is consistent with this assumption.) Then,
- $a'(\tau)^* \xi = (1 \omega)^1/2$ for r>R.
- Since (1 ω)^1/2 = (r_s/rω^1/2)^1/2
 = (r_s/a(τ)ξ)^1/2, one gets
- a(τ)^1/2 * a'(τ) = (r_s/ξ^3)^1/2 and it's solution is
- $a(\tau) = (H(\xi)^* \tau + K(\xi))^2/3$, where
- H(ξ) = (3/2)*(r_s/ξ^3)^1/2, and K(ξ) is an integration constant.

The end of the universe expansion [2]

• For r > R,

 $a(\tau) = (H(\xi)^* \tau + K(\xi))^2/3$

 This means that although outside the extended horizon the universe expansion is decelerated, the expansion reaches at the infinite distance.

The most important comment

- The property of BH in PM is entirely different from that in the Schwarzschild metric. Almost everything based on the latter is wrong.
- One has to review all the observable properties of BH and Neutron Stars (Compact Objects) based on the new metric (PM).