KIGAM 한국지질자원연구원

Interaction of Sb(III) under sulfide-rich reducing environment and brief introduction of landslide research in Korea

> <u>Young-Soo Han</u>, Joo Sung Ahn Korea Institute of Geoscience and Mineral Resources

Dong-Hee Lim Chungbuk National University

www.kigam.re.kr

Korea-Italy Symposium on Landslide Monitoring, Firenze, Italy, April 10, 2017

- Institution introduction
 - Major landslide cases in Korea
 - Landslide research in KIGAM
- Sb(III) geochemistry compared with As(III)
 - Brief introduction of As/Sb pollution
 - Behavior of As/Sb in sulfide rich environment
- Conclusion

KIGAM 한국지질자원연구원

What we are doing at KIGAM?

Korea-Italy Symposium on Landslide Monitoring, Firenze, Italy, April 10, 2017

Landslide cases

in Korea

KIGAM 한국지질지원연구원

Korea-Italy Symposium on Landslide Monitoring, Firenze, Italy, April 10, 2017

Damages induced by landslides

(Statistics Korea, 2016)

Landslides in Gangneung city ('02)

KK

Korea-Italy Symposium on Landslide Monitoring, Firenze, Italy, April 10, 2017

Landslides on the highway ('06)

Korea-Italy Symposium on Landslide Monitoring, Firenze, Italy, April 10, 2017

Destruction of a house by landslide (11)

- KIGAM

Korea-Italy Symposium on Landslide Monitoring, Firenze, Italy, April 10, 2017

당전 것 배달 @ 도시 중, 대운당전 대운당전

Landslides at Mt. Woomyeon in Seoul ('11)

Courtesy : Korea Forest Service)

ea-Italy Symposium on

Landslides at Mt. Woomyeon in Seoul ('11)

Korea-Italy Symposium on Landslide Monitoring, Firenze, Italy, April 10, 2017

Landslides at Mt. Woomyeon in Seoul ('11)

Damage by the landslide at Mt. Woomyeon (11

Korea-Italy Symposium on Landslide Monitoring, Firenze, Italy, April 10, 2017

KIGAM 한국지질자원연구원

Debris flows in a mountain valley('13)

Methods of landslide monitoring & warning

KIGAM 한국지질자원연구원

Korea-Italy Symposium on Landslide Monitoring, Monitoring of soil property change

Components of landslide monitoring

KIGAM 한국지질지원연구원

Firenze, Italy, April 10, 2017

Monitoring of soil property change

Locations of landslide field monitoring sites

- Monitoring systems at 11 sites in 6 National Parks and 1 metropolitan city (as of 2016)
- 2 additional sites to be installed in 2017
- Monitoring and analysis of data to decide warning threshold

Monitoring of soil property change

VWC / Dielectric Permittivity / Temp.

8888 944-1(88 8988 8444 (88

admi

0

3[루시미

Suction stress

Slope displacement KIGAM 한국지질자원연구원

Korea-Italy Symposium on Landslide Monitoring, Firenze, Italy, April 10, 2017

Korea-Italy Symposium on Landslide Monitoring, Monitoring of soil property change

Gradient of the VWC change \Box

- Warning threshold based on gradient of the VWC change by rainfall infiltration
- The gradient is decided by the rainfall infiltration velocity into the soil \checkmark

KIGAM 한국지질자원연구원

Firenze, Italy, April 10.

Korea-Italy Symposium on Landslide Monitoring, Monitoring of soil property change

Gradient of the VWC change

After 1,954 secs.

0 Sec

After 2,374 secs.

After 9,040 secs.

Firenze, Italy, April 10, 2017

- W2 S2

- W1 S1

E.L(m) 0.4 -W3 \$3

KIGAM 한국지질자원연구원

After 4,804 secs.

Korea-Italy Symposium on Landslide Monitoring, Firenze, Italy, April 10, 2017

- Institution introduction
 - Major landslide cases in Korea
 - Landslide research in KIGAM
- Sb(III) geochemistry compared with As(III)
 - Brief introduction of As/Sb pollution
 - Behavior of As/Sb in sulfide rich environment
- Conclusion

KIGAM 한국지질자원연구원

Toxic trace elements

Heavy metals

- Any metallic chemical element that has a relatively high density and is toxic or poisonous at low concentrations
- Atomic density > 4~5 g/cm³
- eg) Cd, Cr, Ni, Cu, Pb, Mn, Co, Hg, Zn, U, Mo, V, Sb, ...

<Target elements in geochemistry>

- Group C elements: Redox sensitive and existing in varous forms
- Element of interest: As, Sb

What is arsenic?

Arsenic contamination around the world

Estimated Risk of Arsenic in Drinking Water

Maximum Contaminant Level for drinking water = 10 ppb (microgram/liter)

Population in risk of arsenic poisoning (India and West Bengal)

Country	Number affected
Taiwan	20 000
Inner Mongolia	50 000
Obuasi Ghana	Unknown
Cordoba Argentina	10 000
Antofagasta Chile	20 000
Lagunera Mexico	20 000
Cornwall Britain	Effect unknown
W. Bengal, India	38, 000 000
Bangladesh	50, 000 000

Dangers of lead and arsenic poisoning

Lead poisoning

High levels of lead

 Mental retardation, coma, convulsions and death

Low levels of lead

Reduced IQ and attention span, impaired growth, reading and learning disabilities, hearing loss and a range of other health and behavioral effects.

The Denver Post

www.youtube.com/watch?v=pyevjRiz1UI

For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.

Periodic Table Design and Interface Copyright © 1997 Michael Dayah. http://www.ptable.com/ Last updated: May 27, 2008																											
57 La Lanthanum 138.90547	2 8 18 18 9 2	58 Ce Cerium 140.116	2 8 18 19 9 2	59 28 Pr 18 Prasecodymium 140.90765	6 N Ne 14	0 1d ¹ 2 Bodymium 14.242	288282	61 28 Pm 23 Promethium 22 (145)		62 24 Sm 24 Samarium 2 150.36	288482	63 Eu ¹ Europium 151.964	2 8 5 8 2	64 Gd Gadolinium 157.25	2 8 8 5 9 2	65 Tb Terbium 158.92535	2 8 18 27 8 2	66 28 Dy 28 Dysprosium 2 162.500	67 2 Ho 18 Holmium 164.93032	68 28 Er 30 Erbium 2 167.259	200000	69 Tm ¹ Thulium 168.93421	2 8 8 1 8 2	70 8 Yb 18 Ytterbium 2 173.054	288282	71 Lu ¹¹ Lutetium 174.9668	288202
89 Ac Actinium (227)	2 8 18 318 9 2	90 Th Thorium 232.03806	2 8 18 32 18 10 2	91 ² Pa ¹⁸ ¹⁸ ²⁰ ²¹⁰ ²¹⁰ ²¹⁰	9 Ur 23	2 J ¹ 32 ranium 38.02891	2882192	93 ² 8 ¹⁸ Np ¹⁸ ³² ²² ²² ²² ²³⁷⁾		94 22 Plutonium 22 (244) 22	2882482	95 Am ¹ Americium (243)	2 8 2 5 8 2 5 8 2	96 Cm 32 Curium 29 (247)	2882592	97 Bk Berkelium (247)	2 18 32 27 8 2	98 8 Cf 32 Californium 8 (251) 28	 99 28 Es 18 29 Einsteinium 8 (252) 29	100 28 Fm 32 56 56 56 57 57 57 57 57 57 57 57 57 57	2882082	101 Md ¹ Mendelevium (258)	2882182	102 2 Nobelium 2 (259) 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2882282	103 Lr 33 Lawrencium (262)	28822292

Geochemical properties of Sb

- Oxidation state: Sb⁻³ ~ Sb⁺⁵
- Oxidizing condition: +5
- Reducing condition: +3
- Aqueous oxyanion
- Similar to As in chemical properties

Sb: oral ingestion

membrane irritation, vomiting,

Abdominal pain, diarrhea,

cardiac toxicity

Gastrointestinal mucous

unit: µg/L	USA	canada	UK	German y	France	Australia	Japan	WHO		
먹는 물 수질기준	6	6	5	5	10	3	2	5		

KIGAM 한국지질자원연구원

Iron sulfide for Arsenic(III) removal

- Sulfide minerals can be used to control arsenic concentration.
 - Pyrite : inner-sphere adsorption (Zouboulis et al., 1993)
 - Mackinawite : outer-sphere arsenic surface complex and coprecipitation of poorly crystalline arsenic sulfide (Farquhar et al., 2002)
 - Troilite and pyrite : a mononuclear, bidentate surface complex, arsenopyrite-like surface precipitation (Bostick and Fendorf, 2003)
 - Disordered mackinawite : outer-sphere complexes (Wolthers et al., 2005)
 - Mackinawite : realgar-like precipitation and adsorption (Gallegos et al., 2008)
- Mackinawite (FeS) for As(III) sequestrator
 - First mineral product when Fe²⁺ and S²⁻ react
 - S²⁻ : Sulfide has a strong affinity for heavy metals
 - Commonly found mineral
 - Nano size → High surface area (~ 300m²/g) → High reactiv

Need to control size of the FeS \rightarrow FeS-coated sand

Sb-FeS

• Understand geochemical behavior of Sb with FeS

- Batch and spectroscopic study
- Compare its results with those with As-FeS

• Simulate the Sb reaction in contaminated soil column

- Geochemical reaction in various redox environment
- Sb-column Observe the change of oxidation state of Sb

Expected results

- The geochemical reaction mechanisms of Sb under S-rich environment
- How to utilized well-investigated As chemistry to understand that of Sb

Rhizosphere/vadose zone column test

Column study simulating plant rhizosphere and saturated zone

Objective of column study

- 1. Simulating and Observing plant-soil-water interaction
- 2. Effect of redox condition on Sb behavoir
- 3. Solid phase Sb speciation using a synchrotron X-ray absorption spectroscopy

Spectroscopic methods as an useful tool Key note: which technique should be employed? Minerals can "sorb" ("sequester," "immobilize") inorganics: surface bulk-phase ion exchange surface ppt. complexation ppt. contaminant conc. energy loss $(-\Delta G_{rxn})$ mobility & bioavailability analysis of sorption phases using x-ray tools x-ray diffraction (XRD) x-ray photoelectron spectroscopy (XPS) x-ray reflectivity (XR) -> x-ray absorption spectroscopy (XAS)

Worldwide Synchrotron Facilities

Synchrotron facilities worldwide

http://www.veqter.co.uk/residual-stress measurement/synchrotron-diffraction

Division of the X-ray absorption spectroscopy in energy regions

As/Sb removal under varying pH conditions

As(III) and Sb(III) removal efficiency under pH 2 to 12 conditions with the amount of dissolved As or Sb left in solution and its speciation ($I_0 = 150 \text{ mg/L}$ for As(III) and 500 mg/L for Sb(III)). Aqueous speciation was conducted using a Bond Elut C18 cartridge.

EXAFS results of FeS reacted with As/Sb

Sb(V)-cont. soil column test results(I)

- 1. After the initial weakly-bound Sb outflow, the Sb efflux of the rhizosphere zone is more prominent
- 2. In the anaerobic zone, the reductive dissolution of iron in natural soil was observed
- 3. The ratio of Sb (III) / Sb (V) increases as the reaction time increases in anaerobic zone. The role of Sb reduction bacteria?

Sb(V)-cont. soil column test results(III)

- 1. Distribution of microbial communities in the plant rhizosphere and column lower saturation zone
- 2. The redox state of antimony may be changed by microorganisms.

Sb(V)-cont. soil column test results(IV)

Conclusion

- Interaction of Sb(III) with mackinawite was tested under acidic and basic pH conditions and the reaction mechanisms of Sb(III)-FeS and As(III)-FeS were compared.

- In both Sb(III)- and As(III)-FeS systems, pH was revealed as an important controlling parameter.
- Under acidic conditions the dominant reaction process was precipitation of as sulfide minerals.
- Surface complexation was the dominant reaction process under basic pH conditions.
- The redox condition of soil environment seems to be an important control of Sb redox states