

About OMICS Group

OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of making the information on Sciences and technology 'Open Access', OMICS Group publishes 500 online open access scholarly journals in all aspects of Science, Engineering, Management and Technology journals. OMICS Group has been instrumental in taking the knowledge on Science & technology to the doorsteps of ordinary men and women. Research Scholars, Students, Libraries, Educational Institutions, Research centers and the industry are main stakeholders that benefitted greatly knowledge dissemination. OMICS International also from this organizes 500 International conferences annually across the globe, where knowledge transfer takes place through debates, round table discussions, poster presentations, workshops, symposia and exhibitions.

Shanghai University Of TCM About OMICS International Conferences

OMICS International is a pioneer and leading science event organizer, which publishes around 500 open access journals and conducts over 300 Medical, Clinical, Engineering, Life Sciences, Pharma scientific conferences all over the globe annually with the support of more than 1000 scientific associations and 30,000 editorial board members and 3.5 million followers to its credit.

OMICS International has organized 500 conferences, workshops and national symposiums across the major cities including San Francisco, Las Vegas, San Antonio, Omaha, Orlando, Raleigh, Santa Clara, Chicago, Philadelphia, Baltimore, United Kingdom, Valencia, Dubai, Beijing, Hyderabad, Bengaluru and Mumbai.

Metal Element on Non-alcoholic Fatty Liver Disease(NAFLD)

Yongyu Zhang

Shanghai University of Traditional Chinese Medicine (State Administration of TCM key Laboratory of Metabonomics)

> <u>dryyz@sina.com</u> zyy@shutcm.edu.cn

Mixed standard solution (26): such as Na \smallsetminus Mg \checkmark K \checkmark Ca \checkmark Fe \backsim Cu、Zn、V、Mn、Cr

1	1.0			1.00 2.1 20		· · · · · ·		2.4 2.4 2	and the second			
	1.040	100	-	12 - 10	7 U =	물 물 124	1 30 36 2	TAL 121 10		3- A-		
		H111	-	▲ 14.155							-	
		A	35	C	D	2	F	G	н	I	J	x
	1	m/z	xt/min	0-0-1	0-0-2	0-0-3	0-0-4	0-0-5	0-0-6	0-0-7	8-0-0	0-0-9
	2	100	5.64	1.7255	1. 7028	1.951	1.3265	2. 41.97	0.86154	5.6425	6. 6377	0.015248
	3	107		61.819	99, 723	310, 13	94.324	2,5806	17.012	43, 399	2.8573	70, 74
L	4	131	5, 94	1.6825	0.77316	0.85175	7.725	1.8037	1.5946	0.67724	0.846	0.38793
L	5	64	6. 53	1.5079	2.0301	5.6693	2.8511	12.845	13, 398	7.7217	9, 0834	6. 5216
	6	76	6.85	18.352	9,071	9. 4263	10.229	7.1339	6.33	T. 0931	4.25	3.0977
	T	73		14. 311	13,478	16, 271	29,014	9, 6294	7.8561	6.8738	13, 301	4.7329
	8	140		6,4482	3, 0577	3, 4674	5,636	5,8819	S. 7617	2.4855	2.6377	1.1319
L	9	101		22.76	235.65	281.7	134.41	99.315	47.796	26.237	8,5432	13, 737
L	10	102		28.544	88, 838	81, 913	45.302	26.159	348.84	68,789	1.3438	9,8395
	11			6, 545	14.424	12. 788	3.9873	11.997	14, 155	12.142	5.1545	1.254
L	12	105	T. 48	9.0409	6, 3652	2,1001	35, 649	7,453	2, 9893	8,6927	47.041	33. 774
L	13	123		1.8924	4, 1935	8, 4879	5,1218	11,884	2.6327	7.1438	0.41602	1.1138
L	14	70		13, 713	319.77	13.015	8.2153	9.0434	12.143	8.5796	37.269	3,1393
L	15	116		32, 838	9.3182	15, 137	7.7187	60.285	62, 879	36, 239	42.63	30, 607
L	16	128		10, 954	4.75/08	8, 8368	2.5188	2. 7921	2.4681	4.3838	1.0094	2,6361
1	17	82		170.98	66, 241	61.971	102.16	123.62	126.34	47.207	59,001	25, 088
	18	113		00, 866	17.302	32, 83	10, 223	6, 2157	5,1495	20, 971	53, 052	38, 089
L	19	91		30, 675	51.685	109, 86	BB. 545	29,126	164.36	34,095	13, 442	37. 739
L	20	85		13.043	11.865	20, 632	13.327	11.44	8, 2907	14.152	7.1257	2,5513
Ŀ	21	169		23, 64	0.19565	12, 521	19.5	0.6333	21.484	T. 9064	0.75016	3. 147
L	22	141	8.49	4.8961	1.4857	2.3917	1.3924	0.96533	0.96679	2.0889	1.012	2.8521
L	23	116		146	182,14	2.7716	171.89	86, 226	88, 466	350, 5	143, 92	62, 13
L	24	142	8, 64	20.778	9,9414	13.84	15, 893	23. 337	19, 363	9,399	10,62	5,069
E	25	143		5.332	5.1186	4. 2496	3. 493	4.715	2.7297	1.7405	0.99602	1.5185
L	26	102		851.79	1269.8	1157.7	\$30, 69	414.13	2,0045	1002.2	2699.4	1798
L	27	74		902.12	441.61	341.4	62.498	1656.1	1727.4	995.55	1171.1	B40. H3
1	28	115	8,92	1.9254	2.6423	2.7593	3, 5658	1. TSO6	1.2255	2,1985	1.1911	7.992

Control group: 8 Model group : 8 Herb group : 8

- Herb group
- once/day(by gavage) 4 weeks
- Collect serum liver
- liver function indexes detection histological study

Result

pathological section

Figure Relative changes of metal elementsin Control-Model-Drug

*P<0.05; ** P<0.01 model group compared with the control group # P<0.05 model group compared with the Drug group

大學 Shanghai University Of TCM

Changing trend of different elements

element	Model	Drug	
Cr	down	up	
Se	down	up	
Zn/Cu	down	up	
Cu	up	down	
Ca/Mg	up	down	
Mn	down	up	
К	up	down	
	element Cr Se Zn/Cu Cu Ca/Mg Mn K	elementModelCrdownSedownZn/CudownCuupMnupMnup	

Fold change analysis of metal elements in Control-Model-Drug

Our team

Thank you for your attention!

Welcome to china ; welcome to shanghai !

Let Us Meet Again

• We welcome you all to our future conferences of OMICS International

Please Visit:

<u>www.metabolomicsconference.com</u> <u>www.conferenceseries.com</u> <u>http://www.conferenceseries.com/clinical-research-conferences.php</u>