JBPOS0101: A New Generation mGluR- and BBB-Targeted AED for the Treatment of Super-Refractory Status Epilepticus (SRSE)

Bio-Pharm Solutions Co., Ltd.

Yongho Kwak, Ph.D.

Director of Pharmacology

Who We Are

- **Bio-Pharm Solutions Co., Ltd.** is a privately-owned drug discovery and development company based in South Korea
- **Dr. Yong Moon Choi, CEO,** has a track record in the field of epilepsy, including orphan epilepsies:
 - Involved in the development of **Felbamate**, currently used in the treatment Lennox-Gastaut Syndrome
 - Invented YKP3089, currently in late-stage clinical development at SK for refractory partial-onset seizures
 - Invented **Carisbamate**, a drug candidate for refractory partialonset seizures which reached the NDA stage

JBPOS0101 Overview of SRSE

- A unique mechanism of action (metabotropic glutamate receptors) not presently associated with currently-used antiepileptic drugs
- Potent efficacy in the pharmaco-resistant status epilepticus (BDZ-resistant)
- Antiepileptogensis through suppressing spontaneous recurrent seizures
- Neuroprotection through blocking hemorrhages in the blood-brain barrier (BBB) of treatment-naive rats
- Potent anticonvulsant properties in a broad spectrum of epilepsy models
- Applications of JBPOS0101 go beyond orphan indications
 - JBPOS0101 has potential applications in infantile spasms based on preclinical pharmacology

Prevalence of Status Epilepticus

- Reported to be between 20 40 / 100,000
- Assuming a population of about 322,000,000, there are up to about 130,000 individuals with status epilepticus in the United States
- An estimated 15% of all cases of status epilepticus will become super-refractory*

*Shorvon and Ferlisi, Brain, 2011, 134:2802-18

Disease Overview: Super-Refractory Status Epilepticus

- Status epilepticus (SE) is defined as continuous seizure activity for ≥ 5 min
- One-third of patients with refractory and super-refractory SE will die, and another one-third will suffer chronic neurologic or other deficits
- No approved treatments for super-refractory SE at this time

JBPOS0101's Efficacy in Lithium-Pilocarpine-Induced SE

JBPOS0101 shows potent efficacy in benzodiazepine-resistant SE

Efficacy of JBPOS0101 in Benzodiazepine-Resistant Electrographic SE

Benzodiazepine-resistant electrographic status epilepticus rat model: Gamma wave power (20-70 Hz) on EEG for 10 hours

Solid line: mean, Shaded area: 95% confidence intervals, Mann-Whitney U-test, *p<0.05

JBPOS0101 suppresses benzodiazepine-resistant electrographic SE

Antiepileptogenic Effect of JBPOS0101 Following Benzodiazepine-Resistant SE

Monitoring of spontaneous recurrent seizures for 14 days

(No. of rats with SRS's / No. of survived rats)									
Davis	Control	JBPOS0101							
Day	Control	50 mg/kg 7days	100 mg/kg						
Day 1	8/8	8/8	4/8						
Day 2	5/7	7/8	3/8						
Day 3	5/7	0/8	0/8						
Day 4	5/7	0/8	0/8						
Day 5	6/7	0/8	0/8						
Day 6	3/7	0/8	0/8						
Day 7	5/7	0/8	0/8						
Day 8	3/7	2/8	0/8						
Day 9	7/7	2/8	0/8						
Day 10	3/5	1/8	0/8						
Day 11	3/5	1/8	0/8						
Day 12	3/5	1/8	0/8						
Day 13	5/5	1/8	0/8						
Day 14	4/4	1/8	0/8						

JBPOS0101 suppresses spontaneous recurrent seizures and shows evidence of antiepileptogenesis

Survival Rate and Body Weight in Lithium-Pilocarpine-Induced SE

Survival Rate and Change in Body Weight for 14 days Survival rate Body weight Normal vs. 100 mg/kg: 350 -100 No Statistical differer 300 80 3ody weight (g) 250 % Survival 200 60 150 40 Control (n=4/8) Normal (n=8/8) 100 Control (n=4/8) JBPOS0101-50 mg/kg, 7 days (n=8/8) 20 JBPOS0101-50 mg/kg, 7 days (n=8/8) 50 - JBPOS0101-100 mg/kg (n=8/8) JBPOS0101-100 mg/kg (n=8/8) 0 0 0 2 8 10 12 14 16 12 O 10 14 16 Day Day

Data were represented as mean \pm S.E.M. Statistical analysis were performed by Two-way ANOVA test and followed Bonferroni Test as a *post hoc* analysis using Prism

JBPOS0101 improves survival rate and body weight in SE

BBB Hemorrhages caused by Lithium-Pilocarpine-Induced SE

Examples of HE staining showing BBB hemorrhages

JBPOS0101 reduces the number and size of hemorrhages in the BBB caused by SE

Neuroprotective Effect of JBPOS0101 in Benzodiazepine-Resistant SE

Status epilepticus-induced hippocampal cell loss after 14 days

JBPOS0101 protects hippocampus against status epilepticusinduced cell death

Effect of JBPOS0101 in SE-Induced Memory Deficits

Assessment of spatial memory and learning in SE-induced rats in the Morris Water Maze

Two-way ANOVA with Bonnferoni's multiple comparison test, *p<0.05

JBPOS0101 improves spatial memory and learning functions in rats with SE

Comparison of Antiepileptic Activity in Animal Models

	ED ₅₀ (mg/kg)										
Compounds	Mice					Rats					
					Strv-		PTZ (po)	Li-Pilo	Li-Pilo	TD₅₀ (po)	
	MES (ip)	PTZ (ip)	scBIC (ip)	scPIC (ip)	Chnine (ip)	MES (po)		Prevention (ip)	Intervention (iv)		
JBPOS0101	9.4 12.1 (po)	14.4	18.1	18.8	36.0	1.2	21.3	18	22.6	402.9 73-78 (ip)	
Allopregnan- olone	>300	2.8 - 19	4.1	31.7	>300	>40	>10	6.8	5.8	27.3 (ip)	
Levetiracetam	> 500	>500	4.7	>500	NA	>500	NA	NA	200 - 1200	>500	
Phenytoin	5.64	>50	>50	>50	NA	28.1	>500	NA	NA	> 1000	
Valproic acid	263	220	589	270	NA	485	646	NA	NA	784	
Vigabatrin	> 1000	595	>2325	940	NA	NA	NA	NA	> 250 (ip)	NA	
Lamotrigine	7.47	>40	>40	>40	54.3(po)	1.3	>412	NA	NA	411	
Topiramate	33	>800	>500	>500	NA	15.8	>1000	>40	NA	>2000	
Felbamate	35.5	126	>250	108	NA	25.3	NA	80.5	NA	>300	
Pregabalin	20.0	109.0	250.0	250.0	NA	1.8	NA	NA	NA	NA	

NA: Not Available

JBPOS0101 shows broad spectrum and potent efficacy

Phase 1 Trial: Safety, Tolerability, and PK in Young Healthy Subjects

- Phase 1 Protocol
 - Approved by US FDA and Health Canada and conducted in Toronto, Canada
 - Single Dose: 30 1100 mg, 64 subjects (8 subjects/8 groups, 6 active/2 placebo)
 - Multiple Dose: 240 960 mg per day for 10 days, 24 subjects (8 subjects/3 groups, 6 active/2 placebo)

Phase 1 Results

- No effects on vital signs
- PK data shows a dose-dependent linear relationship (Cmax, AUC)
- Half-life (T_{1/2}) = 18 23 h

- Mild/transient adverse effects at the highest doses: headache, somnolence, dizziness, euphoria
- Very well tolerated by phase 1 volunteers

Summary

JBPOS0101

- New AED with novel mechanisms
- Active in models of pharmaco-resistant status epilepticus
- Evidence of antiepileptogenic & neuroprotective activity
- Broad spectrum of antiepileptic activity
- Other indications: neuroprotection, pain, anxiety, and depression
- Current plan
- Super-refractory status epilepticus
 - Phase II study (open-label, single-center, adjunctive therapy)
 - Will be performed in USA and South Korea
 - Phase II study initiation in 2017
- Infantile spasms
 - Protocol development/US FDA meeting preparation in progress
- ✓ Response to treatment can be assessed quickly for both clinical trials