# One Health approaches to Zoonotic diseases: HPAI, MERS and AMR





## Yong Ho Park, DVM, MS, PhD

Professor Department of Microbiology College of Veterinary Medicine Seoul National University

Chair, CODEX TFAMR

## One health=One medicine

- Healthy animal
- Safe and healthy food
- Happy people



Codex = Joint FAO/WHO Codex Alimentarius Commission OIE = World Organization for Animal Health IPPC = International Plant Protection Convention (FAO)

## OIE approach to 'One Health'

"Protecting animals, preserving our future"

### Zoonotic potential of animal pathogens\*

- 60% of human pathogens are zoonotic
- 75% of emerging diseases are zoonotic
- 80% of agents having a potential bioterrorist use are zoonotic pathogens
- Nearly all new human diseases originate from animal reservoirs

# OIE(WAHO) global programs

- HP Avian Influenza/FMD
- Rabies
- Zoonoses: Brucellosis/TB....
- Food safety/food-borne diseases
- AMR
- Wildlife diseases
- New emerging diseases: climate changes

**Avian Influenza** 

### **Technical Expertise**

The **OIE in cooperation FAO and WHO**, provides policy advice, strategy design and technical assistance for the control and eradication of avian influenza.

Prevention & Control:

OIE Terrestrial Animal Health Code

### **BIOSECURITY:**

Biosecurity procedures in poultry production (Chapter 6.4)

### SURVEILLANCE:

Guidelines for Surveillance for Avian Influenza (Article 10.4.27)

### **RAPID CONFIRMATION OF SUSPECTS:**

Avian Influenza: Manual of Diagnostic Tests and Vaccines for Terrestrial A nimals (Chapter2.3.4)

## **Avian Influenza**

## - a global strategy

### GLEWS: Global Early Warning System for Major Animal Diseases (including zoonoses)



**Formal FAO/OIE/WHO Initiative** – integrates the work of their different technical areas

Animal and public health early warning system for emerging infectious diseases

### Share disease information and epidemiologica I analyses to initiate appropriate action

### **OFFLU:**

### joint OIE/FAO Network of Expertise for Animal Influenza



### **Established in 2011** to bring together leading animal influenza experts to protect the health of animals and humans from influenza viruses.

## Highly Pathogenic Avian Influenza







HPAI virus and human pandemic virus strain

## H5 HPAI Epidemics in Korea



## Common Source of H5 HPAI Viruses of Korea and Japan



**Asian Migratory Bird Flyways** 



## Domestic Duck Industry in Korea

- Duck industry have been sharply increased
- Biosecurity level is low
- Farms closely located with each other in the plain region
- High risk of transmission of virus: from wild birds to farm & farm to farm



Data: Korea Duck Association, 2014

Data: Epidemiological Division of QIA, 2014

## Affected species in poultry



### H5 Gene



H5 Gs/Gd lineage

Korea LPAI H5N8 Ireland HPAI H5N8 American LPAI H5N8



| Duck          | <ul><li>Breeder duck</li><li>Broiler duck</li></ul>                             |
|---------------|---------------------------------------------------------------------------------|
| Chicken       | <ul><li>Broiler breeder, Broiler</li><li>Layer, Korean native chicken</li></ul> |
| Wild bird     | <ul><li>Feces</li><li>Captured birds</li></ul>                                  |
| LBM           | • Live birds market                                                             |
| Minor Poultry | <ul><li>Pheasant</li><li>Quail</li></ul>                                        |
| Others        | <ul><li>Raw material for feed</li><li>Pet bird</li></ul>                        |

## **MERS CoV**

#### **Betacoronavirus**



#### Structure of the Coronavirus Virion:

- S = spike glycoprotein (the viral fusion protein),
- HE = hemagglutinin-acetylesterase glycoprotein,
- M = membrane glycoprotein,
- E = small envelope glycoprotein,
- N = nucleocapsid phosphoprotein

# Middle East respiratory syndrome coronavirus (MERS-CoV)

- Is thought to have an **origin in animals** 
  - Not all community acquired cases of MERS-CoV had reported prior animal contact
  - Evidence suggests that virus has adapted to **camels**
- Is identified in camels in countries in the Middle East and North Africa
- Similar strains of virus were found in humans and camels in the same
  Iocality



- Clinical symptom is associated mild respiratory sign in camels, but morbidity or mortality of aetiology should be investigated
- Immunity to infection is poorly understood, we may not know possibility of reinfection



- Several types of investigation are needed
  - Epidemiological studies of MERS-CoV infections in camels
  - Pathological effects and immune response to MERS-CoV
  - Relationship between camel and human cases of virus
  - Effectiveness of intervention measures aimed at reducing public health risk
  - Monitor evolution of the virus

## How dangerous it is

- There are **no vaccines or treatments** available so far.
- MERS-CoV is considered as a serious public health threat to humans by the WHO
  - Infection can cause severe disease in humans
  - Infection appears to be widespread in *dromedary camels*
  - Coronaviruses may adapt to new hosts, and become more easily transmittable between humans

## MERS-CoV in other animal species

- Fragment of viral genetic material matching the virus was found on bat from Saudi Arabia
- But, current evidence does not indicate a direct link between bats and virus in humans
- Based on receptor studies other animal species have been identified as potential hosts
- Where MERS-CoV is present, assess the presence of virus in wild and other domestic species



## Precaution for at-risk groups

- People working closely with camels may be at higher risk of MERS-CoV infection
  - Farm workers
  - Slaughterhouse workers
  - Veterinarians



- Camels infected with MERS-CoV may not show any signs but it can shed virus through nasal, eye discharge, faeces, milk and urine
- Practice good hygiene and avoid direct contact with all of these

## Diagnosis

- **Serological tests** detect antibodies but do not detect the virus itself
- **RT-PCR** tests can detect genetic material of the virus
- Genome sequencing is the best way to confirm
- Positive results from screening tests should be confirmed using a confirmatory test

## Algorithm for the molecular detection of MERS CoV





## **Detection of MERS CoV**

**√** The standard method for MERS CoV detection is to detect virus directly

through virus isolation, or PCR

- $\checkmark$  However, these methods require professional skills, lab. equipments, high cost and time-consuming
  - --- not easy to perform, even worse not match to field situation







## **BioNote MERS CoV Ag Rapid**



(A) Positive (B) Negative MERS CoV Ag Rapid

www.bionote.co.kr



## Prevention & Recommended action



### Sick with CHIKUNGUNYA, DENGUE, or ZIKA?

Protect yourself and others from mosquito bites during the first week of illness.

#### **Protect family and friends**

- During the first week of illness, chikungunya, dengue, or Zika virus can be found in the blood.
- A mosquito that bites you can become infected.
- An infected mosquito can bite a family member or neighbor and make them sick.



#### Watch for these symptoms See your doctor if you develop a fever with any of the

- following symptoms:
- Muscle or joint pain
- Headache, especially with pain behind the eyes
- Rash
- Conjunctivitis (red eyes)



#### For more information:

www.cdc.gov/chikungunya www.cdc.gov/dengue www.cdc.gov/zika

### Protect yourself from mosquito bites

- Wear long-sleeved shirts and long pants.
- Use door and window screens to keep mosquitoes outside.
- Use insect repellent.



U.S. Department of Health and Human Services Centers for Disease Control and Prevention

## Drivers for the emergence of zoonotic diseases

### **1. Habitat destruction, Human encroachment**

- -> Drive diverse wildlife species together, Pushing wildlife and livestock into overlapping environments
- -> Facilitate the transfer of novel agents into naive & susceptible species ex) Outbreak of Nipah virus(Malaysia, 1999)



### 2. Climate and habitat change

- : Significant effect on vector distribution
- (Expanding geographical ranges of zoonotic pathogens)

#### < Climatic factors affecting infection and transmission of vectorborne diseases >

| Disease (causative agent)                                                                                                              | Vector         | Relevan                   | t climatic factors                                                                               | Effects of climatic vari                                                                                  | ability or climate change                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Parasitic vectorborne diseases<br>Malaria (Plasmodium vivax,<br>P. falciparum)                                                         | Mosquitoes     | Temper<br>El Ni<br>surfac | rature, rainfall, humidity,<br>iño–related effects, sea<br>ice temperatures and abundance of vec |                                                                                                           | athogen development in vector;<br>duction, activity, distribution,<br>ectors; transmission patterns<br>pak occurrance                 |
| Arboviral diseases                                                                                                                     |                |                           |                                                                                                  |                                                                                                           |                                                                                                                                       |
| Dengue fever (Dengue virus)                                                                                                            | Mosqu          | itoes                     | Temperature, pr                                                                                  | ecipitation                                                                                               | Outbreaks, mosquito breeding ,abundance,                                                                                              |
| Yellow fever (Yellow fever virus)                                                                                                      | Mosqu          | iitoes                    | Temperature, pro                                                                                 | ecipitation                                                                                               | Outbreaks, incidence; distribution, abundance, and<br>breeding of mosquitoes, transmission intensity<br>(extrinsic incubation period) |
| Chikungunya Fever (Chikungunya virus                                                                                                   | ) Mosqu        | itoes                     | Temperature, pro                                                                                 | ecipitation                                                                                               | Outbreaks; mosquito breeding and abundance,<br>transmission intensity (extrinsic incubation period)                                   |
| West Nile virus disease (West Nile virus)                                                                                              | ) Mosqu        | itoes                     | Temperature, pro                                                                                 | ecipitation                                                                                               | Transmission rates, pathogen development in vector,<br>distribution of disease and vector                                             |
| Rift Valley Fever (Rift Valley Fever virus                                                                                             | ) Mosqu        | itoes                     | Precipitation, sea<br>temperatures                                                               | a surface                                                                                                 | Outbreaks; vector breeding and abundance,<br>transmission intensity (extrinsic incubation period)                                     |
| Ross River virus disease (Ross River virus)                                                                                            | Mosqu          | itoes                     | es Temperature, precipitation, sea<br>surface temperatures                                       |                                                                                                           | Outbreaks, vector breeding and abundance,<br>transmission intensity (extrinsic incubation period)                                     |
| Tickborne encephalitis (Tickborne<br>Encephalitis virus)                                                                               | Ticks          |                           | Temperature, precipitation,<br>humidity                                                          |                                                                                                           | Vector distribution, phenology of host-seeking by vector                                                                              |
| Bacterial and rickettsial diseases<br>Lyme borreliosis (Borrelia burgdorferi, B.<br>garinii, B. afzelii, or other related<br>Borrelia) | Ticks          | Temper<br>humi            | ature, precipitation,<br>dity                                                                    | Frequency of cases, ph<br>vector, vector distrib                                                          | enology of host-seeking by<br>ution                                                                                                   |
| Tularemia (Francisella tularensis)<br>Human granulocytic anaplasmosis<br>(Anaplasma thagocytophilum)                                   | Ticks<br>Ticks | Temper<br>Temper          | rature, precipitation<br>rature, precipitation                                                   | pitation Case frequency and onset<br>pitation Vector distribution, phenology of host-seeking by<br>vector |                                                                                                                                       |
| Human monocytic ehrlichiosis                                                                                                           | Ticks          | Temper                    | rature, precipitation                                                                            | Phenology of host-seeking by vector                                                                       |                                                                                                                                       |
| Plague (Yersinia pestis)                                                                                                               | Fleas          | Temper<br>humi<br>event   | ature, precipitation,<br>dity, El Niño–related<br>s                                              | Development and main<br>vector; survival and n<br>hosts; occurrences o<br>regional outbreaks, o           | ntenance of pathogen in<br>reproduction of vectors and<br>f historical pandemics and<br>distribution of disease                       |

## 3. Handling & consumption of bush meat

ex) Outbreak of Evola virus



## 4. Virus activity expanded



THE AMERICAN NATURALIST February 2016, 187(2)

### 5. Vector activity expanded (bats)



Schematic summary of zoonotic viral disease outbreaks in the last decade The color bars above the line indicate the different disease events whereas the small bars below the line define the boundary of each calendar year. (*Rev. sci. tech. Off. int. Epiz.*, 2014, 33 (2), 569–581)

### What kind of animals transmit zoonosis?



### **Wild Animals**

**Ticks** 











### Bats and emerging zoonotic viruses

: A New Frontier of Emerging Infectious Diseases

### "Are Bats Special As Viral Hosts?"

- High species diversity(925/4,600 mammal(20%)),
- Long life span(~25 years),
- The capacity for long-distance dispersal(travel 200-400mile),
- Dense roosting aggregations(colony size),
- The use of torpor & hibernation (to conserve energy during cool nights and winter months)



### Bats and emerging zoonotic viruses

: A New Frontier of Emerging Infectious Diseases

### "Are Bats Special As Viral Hosts?"

### Hosting more viruses per species than rodents.

Bats Carry More Human-Infecting Virus than Rodents

| Ordor   | mean no. host/virus | Total viruses |           | Zoonotic viruses |           |
|---------|---------------------|---------------|-----------|------------------|-----------|
| Order   |                     | No.           | mean/host | No.              | mean/host |
| Bats    | 4.51                | 137           | 2.71      | 61               | 1.79      |
| Rodents | 2.76                | 179           | 2.48      | 68               | 1.48      |

Source : USDA National Wildlife Research Center - Staff Publications. Paper 1527.

### Bats and emerging zoonotic viruses



Figure : Distributions of bat-human virus sharing showing numbers of bat-human shared viruses at 17 grid resolution (A)—color represents a linear scale from 1 (green) to 16 (red)—and composition of viruses by family within the six World Health Organization World Regions (B), where the size of the charts is proportional to the number of viruses. Shading denotes region (from lightest to darkest: Europe, South Asia, Africa, Americas, Eastern Mediterranean, Western Pacific), while colors denote viral family (see key).

THE AMERICAN NATURALIST February 2016, 187(2)



Rousettus aegyptiacus(Egyptian rousette)



Pteropus alecto(black flying fox)



| <sup>····································</sup> | <b>~</b> |
|-------------------------------------------------|----------|

과일박쥐 (수입완료!! 한정분양)

인기상품



#### 적립금맥 : 2,500원 남은수량 : 품절 ---- 배송방법 선택(필수) ----

서울/수도권 퀵배송(배송비후불)

판매가격 : 260,000원

택배

지 방

예

 $\sim$ 국가

=== 전 체 ===

🔍 조회하기

두수(마리/군)

상품명 : [초특가]과일박쥐-한정수량!!입고완료!!!!!!!

#### 총계 로 [초특가]과일박쥐-한정수량!!입고완료!!!!!!! 📭 🖙

총계 마리

박쥐

품목계 마리

품목계 🖻

품목/품명

품목

포유류

포유류

|   | 2013년 | 수입축 | 산물 | 검역현 | 13  |
|---|-------|-----|----|-----|-----|
|   | 2014년 | 수입축 | 산물 | 검역현 | 1   |
| ÷ | 열처리   | 가금육 | 수입 | 검역현 | ! ē |

아리

| 2013년    | 수입축    | 산물   | 검역현황  |  |
|----------|--------|------|-------|--|
| 2014년    | 수입축    | 산물   | 검역현황  |  |
| 04-51-51 | -1-7-0 | A 01 | 71 04 |  |

#### 🛅 품목별 불합격수입현황

- 🛅 국가-품명별 불합격수입현황
- 🛅 품목-국가별 불합격수입현황
- 🛅 국가-품명별 수출입현황
- 🛅 품목-국가별 수출입현황

- 🛅 품목별 수출입현황
- + 수출입동축산물검역현황



> 농림축산검역본부

#### \* 수출입현황은 전체 실적에 대하여 데이터를 제공, 현장검역 데이터 포함한 것입니다. \*전월 자료는 다음달 10일 이후부터 조회가 가능합니다.

건수

3

3

0

3

0

#### 🕑 수출입 동축산물 검역 현황 🛗 조회일자 : 2016-06-10 선택 \* 당해년도 통계자료는 통계 확정전 잠정치임을 알려드리며 참고용으로만 사용하시기 바랍니다. ◎ 품목별 수출입현황 통계분류 수입동물 $\mathbf{\vee}$ 검사기간 2013 ✔ 년 2 ✔ 월부터 2016 ✔ 년 1 ✔ 월까지

✓ / 박쥐

품명

 $\sim$ 

 $\sim$ 

🎦 엑셀

316

316

0

316

0

Health » Researchers amplify antibiotic of last resort hoping to halt superbugs

# Researchers amplify antibiotic of last resort hoping to halt superbugs

By Elizabeth Roberts, CNN

O Updated 1454 GMT (2254 HKT) May 30, 2017



### ු 🖸 💟 😳

International Edition +  $\mathcal{P} \equiv$ 

#### News & buzz



Donald Trump likes to 'joke' about a lot of things that aren't...

Hot car deaths reach record numbers in July

Source: CNN

New "superbug" no antibiotic can combat arrives in U.S. 03:23

## **Antimicrobial Resistance (AMR)**

## Why is it of global concern?

## •There is a lack of coherent global approaches to prevention and containment

The human, animal and plant sectors have **a shared responsibility** to prevent or minimize the development of antimicrobial resistance by both human and non-human pathogens

•Harmonization of national antimicrobial resistance surveillance and monitoring programmes, and implementation of international coordination programmes

Implementation of risk assessment





# Fig. 1. Antibiotic consumption in livestock in high-consuming countries, 2010–2030 (projected for 2030). Adapted from Van Boeckel et al. 2015



| CDC 2013 / WHO 2014                                                | Animal Link |
|--------------------------------------------------------------------|-------------|
| 19 threats                                                         | 7 links     |
| URGENT THREATS (3)                                                 |             |
| Clostridium difficile                                              | Possible    |
| Carbapenem-resistant Enterobacteriaceae (CRE)                      |             |
| Drug-resistant Neisseria gonorrhoeae                               |             |
| SERIOUS THREATS (12)                                               |             |
| Multidrug-resistant Acinetobacter                                  |             |
| Drug-resistant Campylobacter                                       | Possible    |
| Fluconazole-resistant <i>Candida</i> (a fungus)                    |             |
| Extended spectrum ß-lactamase producing Enterobacteriaceae (ESBLs) | Possible    |
| Vancomycin-resistant <i>Enterococcus</i> (VRE)                     | Possible    |
| Multidrug-resistant Pseudomonas aeruginosa                         |             |
| Drug-resistant Non-typhoidal Salmonella                            | Possible    |
| Drug-resistant Salmonella Typhi                                    |             |
| Drug-resistant Shigella                                            |             |
| Methicillin-resistant Staphylococcus aureus (MRSA)                 | Possible    |
| Drug-resistant Streptococcus pneumoniae                            |             |
| Drug-resistant tuberculosis                                        |             |
| CONCERNING THREATS (4)                                             |             |
| Vancomycin-resistant Staphylococcus aureus (VRSA)                  |             |
| Erythromycin-resistant Group A Streptococcus                       |             |
| Clindamycin-resistant Group B Streptococcus                        |             |
| Escherichia coli, resistance to FQs                                | Possible    |

## **Swine MRSA & Human infection** (HA/CA/LA)





## Swine MRSA in EU

## EU countries(26)

**MLST** 



### Prevalence: 26.9%(0-50.2%)

ST398:92.5%

(EFSA Journal 2009)



## **Swine MRSA in Asian Countries**



## Prevalence of MRSA in Asia

## **China**:

Pig; 6.4-16.7% Pig farmers; 1.7 -10.7% w/o contact 1.4% w/ contact 14.3%

### Korea:

Breeder & Imported pig ; high MRSA

### Japan:

ST221/ST398/6/9

Thailand: ST9

Malaysia: ST9

Nepal: ST9 w/ bovine mastitis

(17<sup>th</sup> ISSSI 2016, Korea) WVC 2017-8-30

## **Re-emerging MRSA in US**



WVC 2017-8-30

The 13<sup>th</sup> Meeting of Asian Association of Veterinary Schools

## Human & non-human MRSA in Korea



 Although the prevalence of MRSA in food animal products in Korea is still maintained at the low level, occurrence and increase in multiple resistant LA MRSA lineage and virulent HA MRSA lineage can be potential threat to public as animal related job workers and consumers are constantly exposed to these MRSA lineages.

## **Epidemiology of antimicrobial resistance**



## **Companion animal and AMR**





Contents lists available at SciVerse ScienceDirect

#### Diagnostic Microbiology and Infectious Disease

journal homepage: www.elsevier.com/locate/diagmicrobio



#### Dissemination of multidrug-resistant Escherichia coli in Korean veterinary hospitals

Jeong Hwa So<sup>a</sup>, Juwon Kim<sup>b</sup>, Il Kwon Bae<sup>b</sup>, Seok Hoon Jeong<sup>b,\*</sup>, So Hyun Kim<sup>c</sup>, Suk-kyung Lim<sup>a</sup>, Yong Ho Park d, Kyungwon Lee b

Occurrence of antimicrobial resistance and virulence genes, and distribution of enterococcal clonal complex 17 from animals and human beings in Korea

Ka Hee Kwon, Sun Young Hwang, Bo Youn Moon, Young Kyung Park, Sook Shin, Cheol-Yong Hwang, Yong Ho Park<sup>1</sup>

SHORT COMMUNICATION

#### Detection of CC17 Enterococcus faecium in Dogs and a Journal of Veterinary **Comparison with Human Isolates** © 2012 The Author(s Reprints and permiss

sagepub.com/journals K. H. Kwon, B. Y. Moon, S. Y. Hwang and Y. H. Park DOI: 10.1177/104063

http://jvdi.sagepub.cc Department of Microbiology and Brain Korea 21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea

#### Impacts

24(5) 924-931

- This is the first report of Enterococcus faecium CC17 isolated from dogs with enterococcal infections in Korea.
- This is the first genetic comparison of E. faecium isolated from canine and human patients based on results from pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST).
- The results suggest that the CC17 lineage is more able to infect dogs as well as humans than other lineages.

#### Genetic and phenotypic characterization of methicillin-resistant staphylococci isolated from veterinary hospitals in South Korea

Journal of Veterinary Diagnostic Investigation 24(3) 489-498 © 2012 The Author(s) Reprints and permission: sagepub.com/journalsPermissions.nav DOI: 10.1177/1040638712440985 http://jvdi.sagepub.com

Zoonoses and Public Health



## Molecular Characterization of Extended-Spectrum- $\beta$ -Lactamase-Producing and Plasmid-Mediated AmpC $\beta$ -Lactamase-Producing *Escherichia coli* Isolated from Stray Dogs in South Korea

Migma Dorji Tamang, Hyang-Mi Nam, Geum-Chan Jang, Su-Ran Kim, Myung Hwa Chae, Suk-Chan Jung, Jae-Won Byun, Yong Ho Park, and Suk-Kyung Lim

Bacterial Disease Division, Animal, Plant, and Fisheries Quarantine and Inspection Agency, Anyang, Gyeonggi-do, Republic of Korea

J. Microbiol. Biotechnol. (2014), 24(3), 386–393 http://dx.doi.org/10.4014/jmb.1310.10088

# jmb

### Characterization of Veterinary Hospital-Associated Isolates of Enterococcus Species in Korea

Yeon Soo Chung<sup>1†</sup>, Ka Hee Kwon<sup>1†</sup>, Sook Shin<sup>1</sup>, Jae Hong Kim<sup>1</sup>, Yong Ho Park<sup>1</sup>, and Jang Won Yoon<sup>1,2</sup>\*

<sup>1</sup>Department of Veterinary Microbiology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea <sup>2</sup>College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea *blaDHA-1/ CMY-2 blactamase-producing E. coli detected in dogs* 

Similar PFGE pattern of AR Enterococci have been found in companion animal, their owners and vet doctors J Vet Sci 2016, 17(2), 199-206 · http://dx.doi.org/10.4142/jvs.2016.17.2.199

### Isolation and characterization of antimicrobial-resistant *Escherichia coli* from national horse racetracks and private horse-riding courses in Korea

Yeon Soo Chung<sup>1</sup>, Jae Won Song<sup>1</sup>, Dae Ho Kim<sup>1</sup>, Sook Shin<sup>1</sup>, Young Kyung Park<sup>1</sup>, Soo Jin Yang<sup>2</sup>, Suk Kyung Lim<sup>3</sup>, Kun Taek Park<sup>1,\*</sup>, Yong Ho Park<sup>1,\*</sup>

<sup>1</sup>Department of Veterinary Microbiology, BK21 PLUS Program for Creative Veterinary Science Research, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea

<sup>2</sup>Department of Animal Science and Technology, College of Biotechnology and Natural Resource, Chung-Ang University 2nd Campus, Anseong 17546, Korea <sup>3</sup>Animal and Plant Quarantine Agency, Anyang 14086, Korea

Limited information is available regarding horse-associated antimicrobial resistant (AR) *Escherichia* (*E.*) *coli*. This study was designed to evaluate the frequency and characterize the pattern of AR *E. coli* from healthy horse-associated samples. A total of 143 *E. coli* (4.6%) were isolated from 3,078 samples collected from three national racetracks and 14 private horse-riding courses in Korea. Thirty of the *E. coli* isolates (21%) showed antimicrobial resistance to at least one antimicrobial agent, and four of the AR *E. coli* (13.3%) were defined as multi-drug resistance. Most of the AR *E. coli* harbored AR genes corresponding to their antimicrobial resistance phenotypes. Four of the AR *E. coli* carried class 1 integrase gene (*int11*), a gene associated with multi-drug resistance. Pulsed-field gel electrophoretic analysis showed no genetic relatedness among AR *E. coli* isolated from different facilities; however, cross-transmissions between horses or horses and environments were detected in two facilities. Although cross-transmission of AR *E. coli* in horses and their environments was generally low, our study suggests a risk of transmission of AR bacteria between horses and humans. Further studies are needed to evaluate the risk of possible transmission of horse-associated AR bacteria to human communities through horse riders and horse-care workers.

Keywords: Escherichia coli, antimicrobial resistance, class 1 integron, cross-transmission, horse

AR-ESBL-*E.coli* have been found in either horses, environment and human-in-contact



Contents lists available at ScienceDirect

#### Comparative Immunology, Microbiology and Infectious Diseases

journal homepage: www.elsevier.com/locate/cimid

MANUSOLOGY M IEROBIOLOGY A INFECTIOUS DISEASES MANUSATION MANUSATI

CrossMark

MPARATIVE

Prevalence and characterization of *Staphylococcus aureus* and *Staphylococcus pseudintermedius* isolated from companion animals and environment in the veterinary teaching hospital in Zambia, Africa

Jung-Ho Youn<sup>a</sup>, Yong Ho Park<sup>b</sup>, Bernard Hang'ombe<sup>c</sup>, Chihiro Sugimoto<sup>a,\*</sup>

<sup>a</sup> Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Kita-20, Nishi-10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan

<sup>b</sup> Department of Microbiology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea

<sup>c</sup> Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka, Zambia

#### ARTICLE INFO

ABSTRACT

Article history: Received 15 August 2013 Received in revised form 9 December 2013 Accepted 4 January 2014

Keywords: Staphylococcus aureus Staphylococcus pseudintermedius Veterinary hospital Africa Antimicrobial resistance The Republic of Zambia consists of only one veterinary teaching school at the University of Zambia (UNZA) where students and veterinarians are exposed to many bacterial pathogens including Staphylococcus aureus (SA) and Staphylococcus pseudintermedius (SP). The aim of this study was the characterization and antimicrobial susceptibility profile of eleven SA and 48 SP isolates from the veterinary hospitals' in- and outpatients and the environment. No isolate was resistant to cefoxitin by disk diffusion test and the corresponding resistance gene mecA was not found. In contrast, the resistance rates of SA to penicillin (63.6%) and trimethoprim-sulfamethoxazole (36.4%) and SP to penicillin (52.1%) and tetracycline (25.0%) were the highest. A variety of sequence types (STs) without a predominant type including numerous novel types were determined, especially for SP (39.6%). The spa typing provided a clonal assignment for all SAs (100%) and 24 SPs (50%) with three and two novel types, respectively. This study has provided an overview of SA and SP in the veterinary teaching hospital at UNZA. However, for a better understanding of these species regarding pathogenesis and transmission, further studies on the prevalence and characterization of SA and SP from veterinary staff, pet owners, and farm animals in Zambia is needed. © 2014 Elsevier Ltd. All rights reserved.

AR *S.aurus* and *S. pseudintermedius* have been detected in companion animal and their owners.

### Human-to-Dog Transmission of Methicillin-Resistant Staphylococcus aureus

Engeline van Duijkeren,\* Maurice J.H.M. Wolfhagen,† Adrienne T.A. Box,‡ Max E.O.C. Heck,§ Wim J.B. Wannet,§ and Ad C. Fluit‡

Methicillin-resistant Staphylococcus aureus (MRSA) was cultured from the nose of a healthy dog whose owner was colonized with MRSA while she worked in a Dutch nursing home. Pulsed-field gel electrophoresis and typing of the staphylococcal chromosome cassette mec (SCCmec) region showed that both MRSA strains were identical.

Emerging Infectious Diseases

Vol. 10, No. 12, December 2004



Medical Microbiology

Resistance patterns, ESBL genes, and genetic relatedness of Escherichia coli from dogs and owners



A.C. Carvalho<sup>a,b,\*</sup>, A.V. Barbosa<sup>b</sup>, L.R. Arais<sup>b</sup>, P.F. Ribeiro<sup>b</sup>, V.C. Carneiro<sup>b</sup>, A.M.F. Cerqueira<sup>b</sup>

## **Transmission of AMR**



## S. Korea Elected Chair of CODEX Ad Hoc Task Force

- Korea has been elected to head an ad hoc T/F of CODEX (July 3th, 2016)
- Korea will lead efforts in producing global guidelines regarding *the reduction and prevention of the use of antimicrobial resistant microorganisms in environment, farm and fishery products, and food from 2017-2020 (4yrs)*
- Create global guidelines to monitor the use of antimicrobial resistant materials by 2020.

### 국제식품규격위원회 항생제 내성 특 별위원회 (CODEX TFAMR)

### **CAUSES OF ANTIBIOTIC RESISTANCE**

ANTIBIOTICS

Antibiotic resistance happens when bacteria change and become resistant to the antibiotics used to treat the infections they cause.



of antibiotics

Poor infection control

in hospitals and clinics



Over-use of antibiotics in





Lack of hygiene and poor

sanitation



AntibioticResistance





Lack of new antibiotics being developed

World Health Organization

#### Ad hoc Codex Intergovernmental Task Force on Antimicrobial Resistance (TFAMR)

CODEX

International Food Standards

ALIMENTARIUS

World Health Organization

| FAO/WHO ID No:         | CX-804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference:             | CX/AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Terms of<br>Reference: | 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        | <b>Objectives</b><br>To develop science-based guidance on the management of foodborne antimicrobial resistance, taking<br>full account of the WHO Global Action Plan on Antimicrobial Resistance, in particular objectives 3 and 4,<br>the work and standards of relevant international organizations, such as FAO, WHO and OIE, and the<br>One-Health approach, to ensure that Members have the necessary guidance to enable coherent<br>management of antimicrobial resistance along the food chain.                                                                                                                         |
|                        | <b>Terms of reference</b><br>(i) To review and revise as appropriate the Code of Practice to Minimise and Contain Antimicrobial<br>Resistance (CAC/RCP 61-2005) to address the entire food chain, in line with the mandate of Codex.<br>(ii) To consider the development of Guidance on Integrated Surveillance of Antimicrobial Resistance,<br>taking into account the guidance developed by the WHO Advisory Group on Integrated Surveillance of<br>Antimicrobial Resistance (AGISAR) and relevant OIE documents.<br><b>NOTE:</b> The Task Force shall complete its work within three (max four sessions), starting in 2017. |
| Status:                | Active                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Host:                  | Republic of Korea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



## CODEX 항생제 내성 특별위원회 의장 위촉식 및 제1차 전문가 자문회의 개최

 식품의약품안전처(처장 손문기)는 국제식품규격위원회(CODEX)
 '항생제 내성 특별위원회' 의장으로 박용호 교수(서울대 수의학과)를 위촉하고, 3월 10일 특별위원회 운영을 위한 제1차 전문가 자문 회의를 개최한다고 밝혔다.

의장으로 위촉된 <u>박용호 교수는 오는 '18년까지 2년 간 항생제</u>
 내성 특별위원회 의장으로서 국제회의를 주재하고 항생제 내성
 저감화 등을 위한 논의를 주도하는 역할을 맡게 된다.

· SU BER ADE IN HERE HERE HERE UN O DEL ROULS BER AL REALE HERE HERE HERE HERE DELNE BER ELNE REFERE FOR HER LES • ELR RE DI STREEL BES

이는 **지독이었지만, 금독이의 300**00년에 전통인도하여 유명한



#### 박용호 서울대 교수, CODEX 항생제 내성 특별위원장 선임

한국, CODEX 항생제 내성 특별위원회 의장국..내성 저감 국제논의 이끈다

등록: 2017,03,10 12:34:53 수정: 2017,03,10 12:34:53

윤상준 기자 ysj@dailyvetco.ki

BOR CONSTRUCTION



식품의약품안전처가 국제식품규격위원회(CODEX) 항생제 내성 특별위원장으로 서울대학교 수의과대학 박 용호 교수를 위촉했다고 10일 밝혔다.

ARCHITCH REALISTERS OF STRATES AND ARREST ARREST.



## "One Health" approach

Human health communities



## Animal health communities



## Environmental communities

## Acknowledgement

#### **Gunma University Seoul National University Graduate School of Medicine** Koo HC Kim SH Yasuyoshi Ike Jung WK Dr. Tomita/Dr. Tanimoto **Kwon NH** Youn JH Jniv. of Hwang SY Moon BY Shin S **Bohach** G Kwon KH Seo KS Hong MK Kwon KH Lim JY Ahn KJ So JH Kim KY QIA Jung BY Lim SK

Korea FDA/CDC

Jung SC