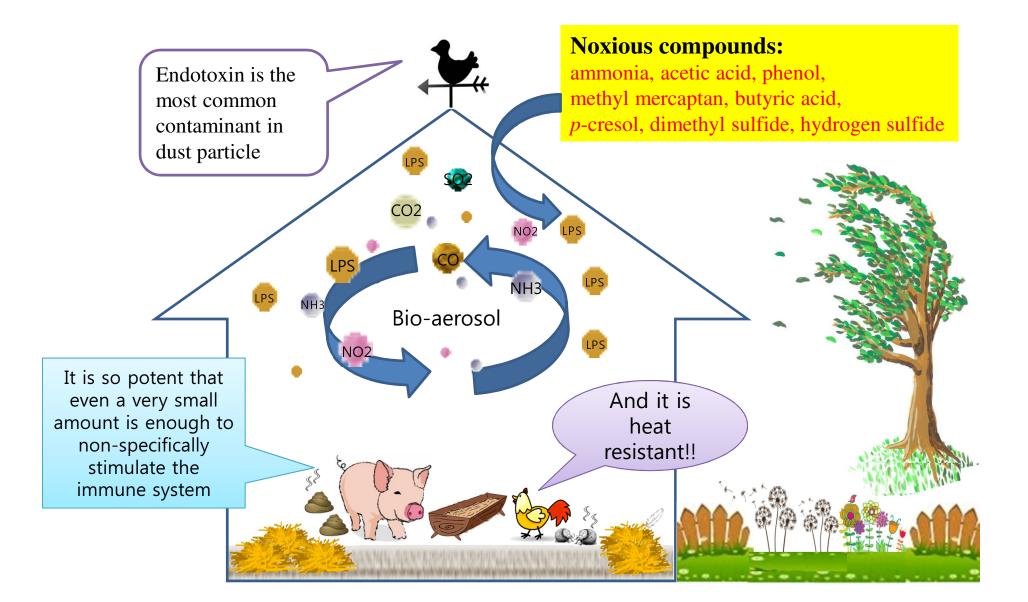
Relationship between Cattle Cellular Immunity and Endotoxin Levels in Dust from Cattle Housing Environment

September 26th, 2016

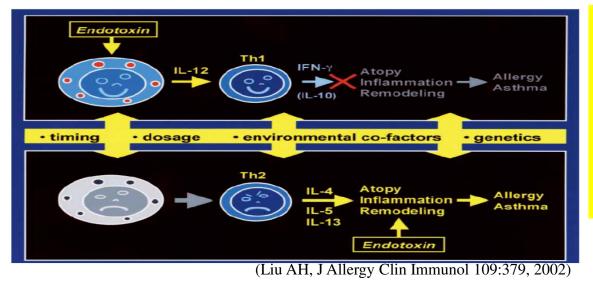
HyoungAh Kim¹, Katharine Roque, EunSeob Song, Ravi Gautam, ChangYeol Kim

Laboratory of Public Health Immunology, College of Bio-Medical Sciences, Catholic University of Daegu, Gyeongsan, Gyeongbuk, Republic of Korea ¹Dept. Preventive Medicine, College of Medicine, The Catholic University of Korea

Yong Heo


Diploma of Korean College of laboratory Animal Medicine EU Scientific Advisory Committee Member (EURL-ECVAM) Korean Board of Toxicology Certified Toxicology Professionals New York State Certified Director of Cellular Immunology [supported by RDA #PJ00867806]

Kim, Hong-Do (1745-1806)


Biological and chemical hazards in indoor husbandry environment

Biological hazards to animal husbandry workers

- Target population : dairy farmers, poultry farm workers, pig barn workers, animal handlers
- Chemical hazards :
 - Acute and chronic dermal, ocular and respiratory diseases from exposure to ammonia, H₂S, CO, CO₂, SO₂, Nox
 - Dermatitis and respiratory tract irritation by detergents, disinfecting agents (formaldehyde)
- Biological hazards :
 - Primarily organic dusts from feathers, dander, feed and bedding, hay and grain, microorganisms (endotoxin)
 - Immunologically mediated diseases :organic dust toxicity syndrome, occupational asthma, chronic obstructive pulmonary disease, allergic alveolitis, hypersensitivity pneumonitis, farmer's lung disease, dermatitis

• Human

Endotoxin exposure has been recognized as a causative agent or contributing factor for various pulmonary illnesses including asthma, organic dust toxic syndrome, or chronic obstructive pulmonary disease

• In animal (*in vivo* and *in vitro* experiments)

- Non-specific pathophysiological reactions, such as fever, changes in white blood cell counts, disseminated intravascular coagulation, hypotension, shock and death.
- Up regulation of proinflammatory cytokine gene expression such as IL-1βs, IL-6, and IL-8 was also observed from chicken heterophils in the presence of LPS.
- LPS induced anorexia, increased temperature, circulating TNFα and cortisol in swine.

Guideline for endotoxin exposure threshold level

No internationally agreed threshold level

Guidelines for 'no-effect' levels for environmental endotoxin.			
Disease	EU/m ³		
Toxic pneumonitis	2000		
Airways inflammation	100		
Systemic effects	1000		

1) Sykes et al., 2011. Waste Management 31:423

2) Rylander. 1997. Int. J. Occup. Environ. Health 3 (suppl.):s32-s36

Original Article J Vet Sci 2015, 16(2), 173-177 • http://dx.doi.org/10.4142/jvs.2015.16.2.173

Relationship between chicken cellular immunity and endotoxin levels in dust from chicken housing environments

JVS

Katharine Roque¹, Kyung-Min Shin¹, Ji-Hoon Jo¹, Hyoung-Ah Kim², Yong Heo^{1,*}

¹Department of Occupational Health, College of Medical and Public Health Sciences, Catholic University of Daegu, Gyeongsan 712-702, Korea ²Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea

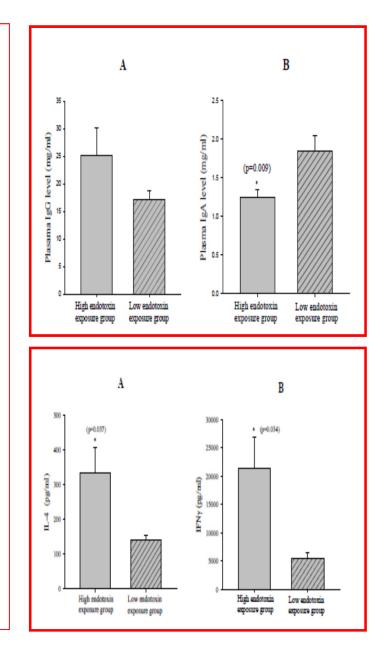
	BS <mark>Broi</mark>	<mark>ler</mark> BE	LK Layir	n <mark>g hen</mark> [G
Total dust (mg/m³)	0.53 ± 0.40	0.57 [†]	1.03 ± 0.23	0.18 ± 0.06
Respirable dust (mg/m³)	0.08 ± 0.05	0.06 <u>±</u> 0.04	0.23 ± 0.10	0.09 ± 0.12
Endotoxin in total dust (EU/m³)	103.6 ± 103.1	620.4	56.3 ± 45.2	682.2 ± 219.2
Endotoxin in respirable dust (EU/m³)	1.75 ± 1.75	6.83 ± 1.22	0.21 ± 0.12	171.8 ± 200.8

*Data are expressed as the mean ± SD.[†]Dust sampling was performed at two different locations for each farm. However, total dust data for the BE farm was obtained from one sampler due to mechanical problems with the other sampler.

Table 4. Humoral or cellular immunity parameters for broiler chickens or laying hens*				
	BS	BE	LK	LG
Plasma IgY (mg/mL) INF-γ (pg/mL) [†] Plasma cortisol (ng/mL)	1.47 ± 0.22 17.15 ± 14.38 [‡] 1.77 ± 0.51	1.52 ± 0.50 $0.0 \pm 0.0^{\$}$ 2.17 ± 0.65	5.63 ± 1.60 251.35 ± 143.57 2.47 ± 0.79	5.98 ± 0.93 47.06 ± 32.59 5.51 ± 2.69

*Data are expressed as the mean ± SEM. [†]Peripheral mononuclear cells (10⁶) were stimulated with 5 μg concanavalin A at 41°C for 72 h in a 5% CO₂ incubator and the culture supernatants were collected to measure interferon-γ (INF-γ) production. [‡]Significant difference (*p* value): BS vs. BE (0.024). [§]INF-γ concentrations in all the culture supernatants were under the detection level.

Association of endotoxin level in dust from indoor housing environment with pigs' immune response


K. Roque^a, K.M, Shin^a, J.H. Jo^a, G.D. Lim^a, E.S. Song^a, R. Gautam^a, C.Y. Kim^a, H.A. Kim^b, Y. Heo^{a*}

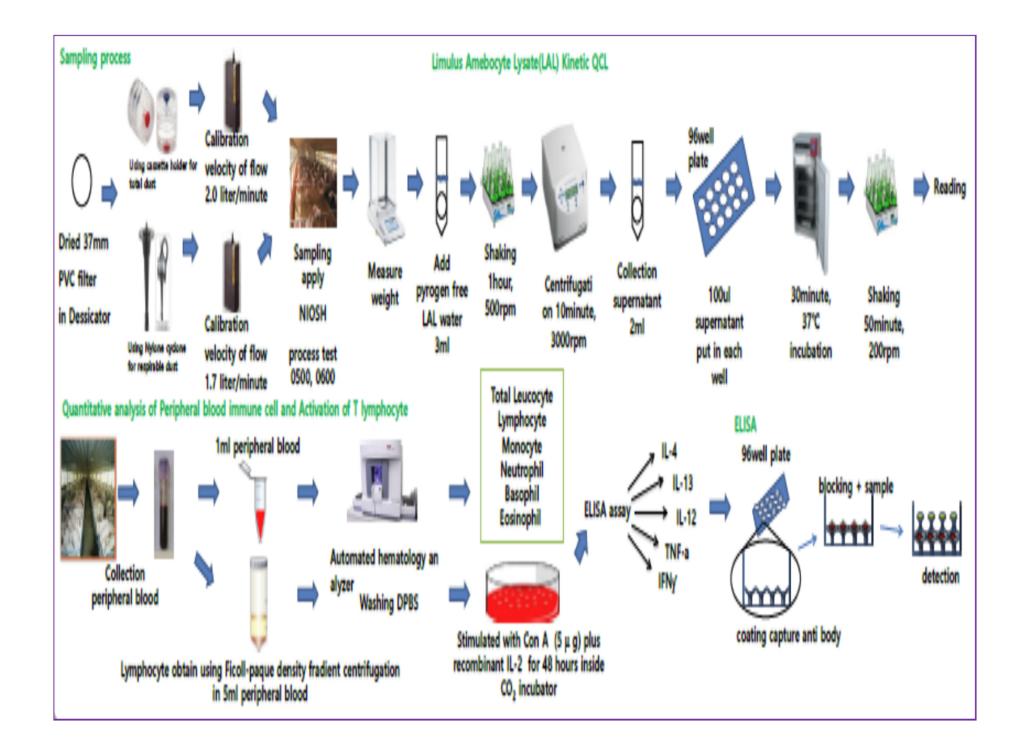
^aDepartment of Occupational Health, College of Medical and Public Health Sciences, Catholic University of Daegu, Gyeongsan-si, Republic of Korea ^bDepartment of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

	High endotoxin	Low endotoxin	Statistical		
	exposure group	exposure group	Significance		
			(p value)		
No. swine farms	5	5			
No. pig	604±429	362±153	n.s.		
Stocking density (m²/head)	1.15±0.25	1.23±0.33	n.s.		
Age of pig (days)	138.8±13.3	118.4±23.4	n.s.		
Total dust (mg/m³)	0.87±0.60	0.58±0.35	0.0536		
Respirable dust (mg/m³)	0.67±0.21	0.32±0.36	0.0001		
Endotoxin in total dust	443.18±480.56	13.05±12.07	0.0003		
(EU/m ³)					
Endotoxin in respirable dust	7.22±4.86	1.03±1.22	0.0000		
(EU/m ³)					
Endotoxin range in total dust:	High endotoxin ex	posure group (47.1~	1198.8 EU/m ³),		
Low endotoxin exposure group ($0\sim29.6 \text{ EU/m}^3$). Data are expressed as the mean \pm SD.					
n.s.: statistically not significant.					

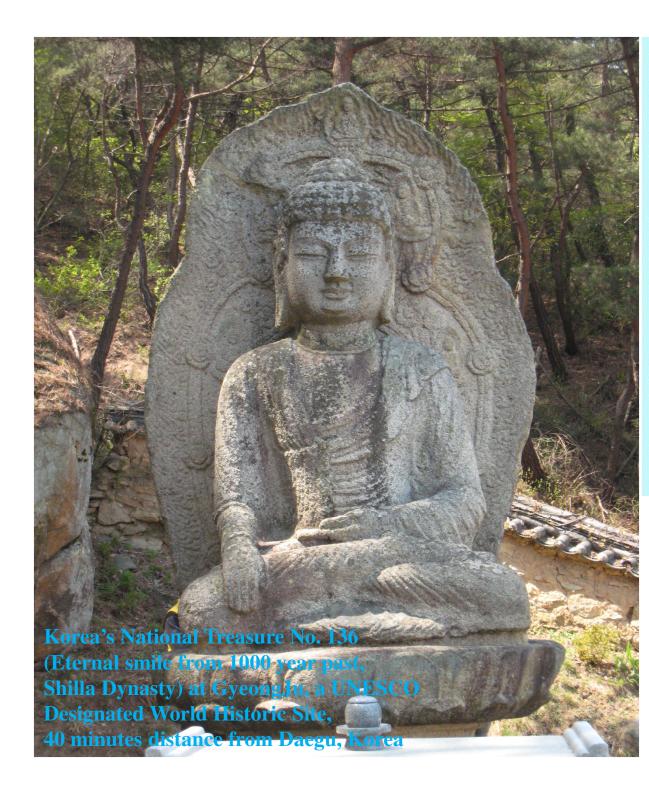
The Veterinary Journal submitted

Relationship (correlation coefficient) of demographic characteristics or concentration of						
endotoxin with various immunological parameters (p value in the parenthesis)						
	Pig age Endotoxin in Endotoxin in					
	(days)	total dust	respirable dust			
		(EU/m ³)	(EU/m ³)			
IL-4 (pg/ml)	0.398 (0.006)		0.579 (0.000)			
IFNγ (pg/ml)	0.622 (0.000)		0.697 (0.000)			
TNFα (pg/ml)		0.706 (0.001)	-0.744 (0.000)			
IL-12/23p40 (pg/ml)		0.663 (0.001)	-0.563 (0.009)			
CD1 ⁺ B cell (%)			0.555 (0.000)			
WBC (10 ³ /µl)		0.496 (0.000)				
Platelet (10 ³ /µl)	-0.679 (0.000)		-0.361 (0.016)			
Neutrophil (10 ³ /µl)		0.420 (0.003)				
Lymphocyte (10³/µl)		0.351 (0.016)				
Monocyte (10³/µl)		0.505 (0.000)				
			•			

The Research on Welfare of Farmers and Animals In Livestock Farms in Korea 2012-2016 (5 year project funded by Korean Rural Development Agency)



Immune parameters evaluated


Category		Industrial animal		
	Hematology	9 parameters for total WBC, RBC, lymphocyte, granulocyte, etc.		
Immune function	Humoral immunity	Plasma total IgG		
	Cellular immunity	- T cell activation with ConA for 72 hours: IL-4, IFNgamma		
		 Phenotype analysis : CD21 B cell , CD4 helper T cell, CD8 cytotoxic T cell, WC1 γδ T cell, CD11b monocyte 		
Environmental monitoring	 -dust collection indoor husbandry: Total dust, respirable dust -Level of endotoxin in dust -Level of aflatoxin in dust -isolation of pathogenic microorganisms (bacteria, fungi) 			

Method for dust collection, endotoxin/aflatoxin measurement

- Concentration of total dust in indoor of the cattle farms was evaluated using PVC membrane filter (SKC, Eighty Four, PA, USA) with 2-stage cassette impactor at flow rate of 2.0 liters/min for 8 hours. Concentration of respirable dust (PM10) was determined using PVC membrane filter with 10 mm Dorr-Oliver nylon cyclone at flow rate of 1.7 liters/min for 8 hours. Dust samplings were done from two different locations (1/3 and 2/3 distance from the exit) at each farm.
- Endotoxin was extracted from the filters through adding 3 ml endotoxin-free Limulus Amebocyte Lysate (LAL) water (LAL Kinetic-QCL set, Lonza, Walkersville, MD, USA) with 5% Tween 20 followed by shaking for one hour at 350 rpm. Supernatants were collected and stored -80°C freezer until analysis. Endotoxin concentrations from the supernatants were evaluated following the company's instruction by a microplate spectrophotometer (Model Epoch[™], Bio-Tek, Winooski, VT, USA).
- Aflatoxin concentration was determined using the Total Aflatoxin ELISA kit (EuroProxima, Netherlands).

Major characteristics of beef cattle^{*} **farms studied**

Far ms	No. cattle	Density (m²/head)	Average endotoxin (EU/m ³) in total dust	Average endotoxin (EU/m ³) in Respirable dust	Average aflatoxin (ng/m ³) in total dust	Average aflatoxin (ng/m ³) in respirable dust
BS	150	15.4	63	0.92	1.37	0.99
BM	350	28.9	178	2.46	1.21	1.21
BE	150	15.4	34	0.32	1.14	0.89
BJ	90	11.9	10	0.17	1.60	0.85
BG	160	14.4	0.6	0.40	1.51	1.10

*Age of cattle : no statistical difference among the farms (15~20 months) **Korean standard for the pro-organic farming: 7.1 m²/head

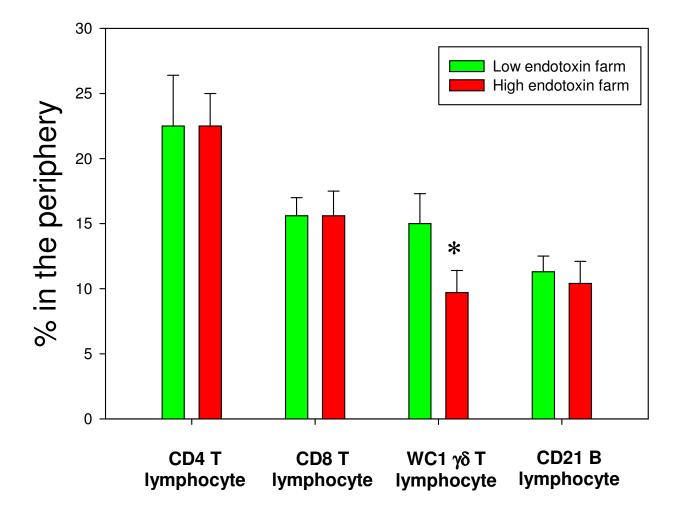
- No. cattle for blood collection per farm: 5
- Time for dust and blood collection: August, 2015

Received: 19 Feb. 2016, Revised: 13 Apr. 2016, Accepted: 8 Jun. 2016
Running title: Airborne microorganisms in livestock farms
Epizootiological characteristics of viable bacteria and fungi in indoor air from porcine,
chicken, or bovine husbandry confinement buildings
Katharine Roque ¹ , Gyeong-Dong Lim ¹ , Ji-Hoon Jo ¹ , Kyung-Min Shin ¹ , Eun-Seob Song ¹ , Ravi
Gautam ¹ , Chang-Yeol Kim ¹ , Kyungsuk Lee ² , Seungwon Shin ³ , Han-Sang Yoo ³ , Yong Heo ¹ ,
Hyoung-Ah Kim ^{4,*}

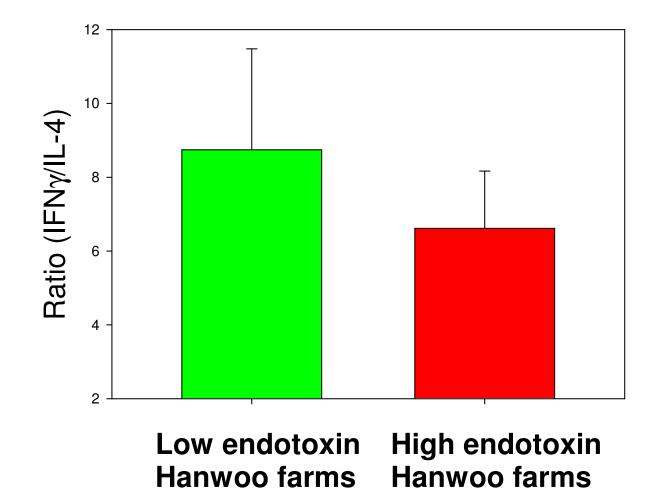
Journal of Veterinary Science, 2016

Microbial culture and species identification

- The culture plates were transported to Seoul National University, College of Veterinary Medicine for microbial cultivation and species identification.
- The TSA (trypticase soy agar) and BA (blood agar) plates were incubated at 37°C for 15-18 hours. The SDA (Sabouraud dextrose agar) plates were incubated at 30°C for 24 hours.
- After the incubation, colonies with different morphology, shape, smell or color were individually re-cultured in BA or SDA plates.
- After simple biochemical tests including Gram staining, oxidase test, and catalase test, microbial identification was carried out with VITEK®2 automated microbial identification system according to the instruction of the manufacturer (BioMerieux, Marcy l'Etoile, France).
- The colonies from SDA plates were also re-cultured and identified by fungal identification method based on colony morphology, characteristics of hyphae and spore after methylene blue or lactophenol blue staining.


Cattle		0 ,				
sheds			C III			
B1	Acinetobacter iwoffi	B. cereus, B. licheniformis, E.faecalis, St.	Ca. albicans,			
		chrmogenes,	Rhizopus spp.			
		St. lentus, St. vitulinus				
B2	Acinetobacter iwoffi	B. cereus, B. licheniformis, K. rosea, St.	Ca. albicans			
		chrmogenes,				
		St. lentus				
B3	NI	B. cereus, B. licheniformis, E.faecalis, St.	Ca. albicans			
		chrmogenes,	Y			
		St. lentus				
B4	NI	B. cereus, B. licheniformis, E.faecalis, St.	Ca. albicans			
21		chrmogenes,	cu: upreuns			
		St. lentus, St. vitulinus				
B5	NI	B. cereus, E.faecalis, St. chrmogenes, St.	Ca. albicans			
D 5	111		Cu. uibicuns			
	7 . 7	lentus				
Abbreviation	Abbreviations: A.: Alcaligenes, Ae.: Aerococcus, B.: Bacillus, C.: Cryptococcus, Ca.: Candida, E.:					
Enterococcus, G.: Gemella, Gr.: Granulicatella, K.: Kocuria, Kl.: Klebsiella, Pr.: Prototheca, S.:						
Sphingomonas, Sp.: Sphingobacterium, St.: Staphylococcus, T.: Trichosporon, V.: Vagococcus,						
*NI: not isola	ted.					

Comparison of hematologic parameters


	High endotoxin exposure farms	Low endotoxin exposure farms	Significance (p value)
WBC (10 ³ /µl, 6.2~13.6)	7.52±0.32	11.37±0.47	0.0000
RBC (10 ⁶ /µl, 7.4~11.6)	8.10±0.38	9.03±0.24	0.039
Platelet (10 ³ /µl, 412~1003)	173.5±42.17	250.47±22.86	n.s.
Neutrophil (10 ³ /µl, 1.1~3.6)	3.25±0.34	3.50±0.28	n.s.
Lymphocyte (10 ³ /µl, 4.0~9.8)	2.69±0.32	5.89±0.25	0.0000
Monocyte (10 ³ /µl, 0.2~1.3)	0.39±0.05	0.39±0.08	n.s.
Eosinophil (10 ³ /µl, 0.0~0.7)	0.83±0.12	1.39±0.15	0.012
Basophil (10 ³ /µl, 0.0~0.3)	0.07±0.01	0.11±0.01	0.0003

Data are expressed as the mean±SE. n.s.: statistically not significant.

Distribution of major immune cells in the peripheral blood

Cytokine production from peripheral T cells

Summary and conclusion

- Overall, our results suggest a probable negative association between dust endotoxin levels and cell-mediated immunity in Korean beef cattle.
- Data on the cellular immunity could indicate lower immune defense against pathogenic challenge to cattle exposed higher concentration of endotoxin than cattle exposed to lower endotoxin level.
- Aflatoxin, which is detrimental to liver function, was also detected in the airborne dust of bovine farms.
- Systemic investigations should be further conducted to elucidate in details the association between husbandry environment and immunity in cattle, and also further evaluation for relationship with immunity of husbandry workers.

Immunology for Public Health Lab.

