N-linked Glycan Characterization and Profiling: Combining the Power of a Novel Labeling Reagent and a Streamlined Analytical Workflow

> Ying Qing Yu Ph.D Waters Corporation

> > Glycobiology World Congress 2015

Glycosylation is a Key Critical Quality Attribute

The International Conference on Harmonization Guideline Q6B requires the analysis of carbohydrate content, structural profiles, and characterization of the glycosylation site(s) within the polypeptide chain(s).

TrastuzumAb, 1 N-linked site 150 KDa

Erythropoietin 3 N-linked sites 1 O-linked site 34 KDa

Entanercept 3 N-linked sites 13 O-linked sites 51 Kda

Glycoprotein Characterization Multiple Strategies – Complementary Information

Carbohydrate Complexity

Waters THE SCIENCE OF WHAT'S POSSIBLE.

Classes of N-Linked Glycans

Waters

Influence on Biopharmaceutical Production

Loss of sialylation decreases EPO half-life from 2 h to 10 min

Fukuda et al (1989). Blood; 73(1): 84-89

Desialylation of intravenous immunoglobulin abrogates its anti-inflammatory properties

Kaneko et al (2006). Science; 313(5787): 670-673

Presence of gal- $\alpha(1,3)$ -gal can induce anaphylaxis (shock) and can be present on biotherapeutics

Chung et al (2006). N Engl J Med; 358(11): 1109-1117

Half of all people contain antibodies against $\beta(1,2)$ -xylose and $\alpha(1,3)$ -core fucose

Bardor et al (1995). Glycobiology; 13(6): 427-434

Conventional Workflow

What is new?

Novel *Rapi*Fluor-MS[™] (RFMS) Reagent

9

RapiFluor-MS Reagent Rapid Reaction Kinetics

Highly stable urea linkage

-5min -

Simplified Sample Preparation

Waters THE SCIENCE OF WHAT'S POSSIBLE.

*GlycoWorks Rapi*Fluor-MS N-Glycan Kit

<15 min

5 min

10 min

30 min

Patent Pending₁₁

©2015 Waters Corporation

RFMS vs. 2AB for MS sensitivity comparison

Waters THE SCIENCE OF WHAT'S POSSIBLE.

Greater than 100x MS response over 2AB labeling

Sample: NIST RM 8670 mAb lot #3F1b

BPI MS

Glycan Characterization with RFMS Labeling *Comparable FLR and MS response across a broad range of glycans*

IgG FLR Simple bi-antennery structures Fetuin Large, complex structures Time 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 34.00 32.00 FA2 A3G3S3 **BPI MS** A3S1G3S3 Fucose GICNAC FA2G2S1 Manoses Galactose NeuAc Time 20.00 11.00 15.00 25.00 30.00 35.00 Xevo G2-XS QTof

Waters

THE SCIENCE OF WHAT'S POSSIBLE.®

RFMS Labeling Enables MS Detection of Very Low Abundance Glycans

RFMS extends MS enhancement throughout the glycan fragmentation pattern

Waters THE SCIENCE OF WHAT'S POSSIBLE.

RFMS enables easy assignment of two isobaric Waters glycans

- The two isobaric glycans, FA2G2 and a minor shoulder peak, partially resolved by HILIC
- The minor peak represents only 0.7% of total FLR signal

RFMS enables easy assignment of a minor shoulder peak of FA2G2 as FA2G1Ga1

- The two isobaric glycans, FA2G2 and a minor shoulder peak, partially resolved by HILIC
- The minor peak represents only 0.7% of total FLR signal
- Structurally diagnostic ions: 1) predominant 528 m/z ion and 2) prominent GlcNAc loss
- High sensitivity and information rich fragmentation data support the identification of the isobaric, lower abundance species as an a-Gal containing FA2G1Ga1.

The Utility of GU Values

What is a GU Value?

- GU stands for Glucose Unit
- A GU value is a normalized glycan structure retention time observed in HILIC for glycan peaks, obtained using a dextran ladder calibration

Why is the GU approach useful?

- GU Values assist in normalizing glycan retention time across days, instruments and laboratories, so data can be compared and shared easily.
- GU Values facilitate more routine glycan assignments by enabling the creation of a single glycan GU retention library.

Generating Waters RFMS GU Glycan Libraries

F(6)A2 [2AB-Glycan]						Reagent: RFMS -
Property	Value	Residues:	8			K
Item type	Glycan	Hexose:	3			
Item description		Sialic acid:	0	\bigcirc		
IUPAC name		Mannose:	3	Ý.	×.	
Formula	la C56H94N4O40 mula C56H94N4O40 le molar mass 1463.3484	Mass [RFMS]:	1773.7190 g/mol	L ``		🔬 🛛 FI R label
Hill formula						
Average molar mass				Ċ		
Monoisotopic mass	1462.5444		mass	Ŷ		
Item tag	Infliximab, Human IgG, Mouse IgG, Human Serum, Herceptin		11035			
InChI						
Properties -						
Synonyms			Identifiers		Physical properties	
Synonym	Synonym type		Identifier Value		Property	Value
F(6)A2			NIBRT GlycoBase 43		GU value	5.87
*			*		GU value standard deviatio	n 0.071
						Experimenta GU value

Waters Glycan GU Library:

- Experimentally derived GU Retention (>10 injections/protein)
- Data from proteins representing spectrum of glycan diversity
- All entries confirmed with exoglycosidase digestion

HILIC FLR GU + Accurate Mass Workflow

Waters

Method Robustness and Transferability, Confident Assignments

Glycan GU Scientific Library Search for Confident Glycan Assignments

Waters THE SCIENCE OF WHAT'S POSSIBLE.

Both 2-AB and RFMS labeled glycan performance test standards are now available to support this workflow

UNIFI Glycan DDA Workflow

UNIFI Acquire and Process Glycan DDA Data *RFMS labeled N-glycans from mouse IgG*

MSMS fragmentation of a highlighted minor glycoform was displayed

Automated Glycan Identification using .LCS Files with SimGlycan

Waters THE SCIENCE OF WHAT'S POSSIBLE.®

The minor glycoform was correctly identified as FA2G2Ga1Sg1

₩ Scan75@1284.541_2 (NIST mAb_RFMS_4)									
MS Profile Search Results Annotated Peaklist									
Rank	Glycan ID	Glycan Sequence							
1	SG09081	NeuGc(a2-6)Gal(b1-4)GlcNAc(b1-2)Man(a1-3)[Gal(a1-3)Gal(b1-4)GlcNAc(b1-2)Man(a1-6)]Man(b1-4)GlcNAc(78.7125						
1	G01320	Gal(a1-3)Gal(b1-4)GlcNAc(b1-2)Man(a1-6)[NeuGc(a2-6)Gal(b1-4)GlcNAc(b1-2)Man(a1-3)]Man(b1-4)GlcNAc(78.7125						
1	SG28755	NeuGc(a2-6)Gal(b1-4)GlcNAc(b1-2)Man(a1-3)[Gal(a1-3)Gal(b1-4)GlcNAc(b1-2)Man(a1-6)]Man(b1-4)GlcNAc(78.7125						
2	G03912	NeuGc(a2-6)Gal(b1-4)GlcNAc(b1-2)Man(a1-3)[NeuGc(a2-3)Gal(b1-4)GlcNAc(b1-2)Man(a1-6)]Man(b1-4)GlcN	77.0187						
3	G01642	NeuGc(a2-6)Gal(b1-4)GlcNAc(b1-2)Man(a1-3)[NeuGc(a2-6)Gal(b1-4)GlcNAc(b1-2)Man(a1-6)]Man(b1-4)GlcN	77.0179						
4	SG26773	GIc(a1-4)GalNAc(a1-2)Gro-manHep(a1-6)GIcN(a1-4)[Gro-manHep(a1-2)Gro-manHep(a1-2)]GalA(a1-3)[Gro	76.6119						
5	SG29411	Fuc(a1-3)[Gal(b1-4)]GlcNAc(b1-2)[Gal(b1-4)GlcNAc(b1-4)]Man(a1-3)[Man(a1-3)[Man(a1-6)]Man(a1-6)]Man(b1	76.1993						
6	SG26529	Gro-manHep(a1-2)Gro-manHep(a1-2)Gro-manHep(a1-2)Gro-manHep(a1-6)GlcN(a1-4)GalA(a1-3)[Gro-man	74.6736						
Glycan Structure (\$G09081)									

- Developing a scientific library for RapiFluor-MS labeled glycans for automated glycan assignment
- Applying RapiFluor-MS label for more complex glycosylated proteins

Acknowledgements

Waters Matt Lauber PhD

New England Biolabs Paula Magnelli PhD

Professor Pauline Rudd (COI)

- Mark Hilliard (UNIFI Glycan Scientific Library)
- Giogio Carta (UNIFI Glycan Scientific Library)

