### Molecular pathogenesis in granulosa cell tumor is not only due to somatic FOXL2 mutation

Yen-Chein Lai Chung Shan Medical University

Taiwan



#### **Types of Ovarian Cancer**

- Sex Cord-Stromal
  - 5-10%
- Epithelial
  - 65-70%
- Germ Cell
  - 15-20%
- Metastasis
   5%



#### Sex Cord-Stromal Tumors

- Develop from the gonadal stroma
- Account for 5-10% of all ovarian neoplasms
- The most common types
  estrogen producing
  - Granulosa cell tumor
  - Theca cell tumor
  - Sertoli-Leydig cell tumor
  - Fibroma





#### Granulosa Cell Tumor

- Clinical presentation and histopathologic differences
- Adult Granulosa Cell Tumor
  - –~95% of GCT
  - perimenopausal or postmenopausal women
- Juvenile Granulosa Cell Tumor
  - Much more rare
  - premenarchal and premenopausal women

••••



### FOXL2 gene mutation 402C>G (C134W)

 Mutation of FOXL2 in Granulosa-Cell Tumors of the Ovary

- N Engl J Med 2009; 360:2719-2729

 Adult-type granulosa cell tumors and FOXL2 mutation

- Cancer Res. 2009 Dec 15;69(24):9160-2

 The role of FOXL2 in the pathogenesis of adult ovarian granulosa cell tumours

......

- Gynecol Oncol. 2014 May;133(2):382-7



#### Granulosa cell tumor a case report

- An 80-year-old woman
  - clinically detectable pelvic mass
  - laparotomy for total hysterectomy and bilateral salpingo-oophorectomy
- An ovarian mass
  - with attached fallopian tube
  - $-11.0 \times 8.0 \times 7.0$  cm
  - brownish in color and elastic
  - On cut, the ovary was yellowish in color and soft.



#### Figure 1 Granulosa cell tumor

Histological cross-section after hematoxylin and eosin staining shows the adult granulosa cell tumor component



## In this case of granulosa cell tumor

• Tumor marker of granulosa cell tumor

|           | immediately after operation | one month post-<br>operation |
|-----------|-----------------------------|------------------------------|
| Inhibin A | 47.208                      | 15.533                       |
| Inhibin B | 92.473                      | 22.331                       |

 No recurrent disease was noted during 3year post-operation follow-up period.



# The granulosa cell tumor section revealed heterozygous *FOXL2* 402C>G mutation



Figure 2 Replication error was detected on analysis of the lengths of CAG repeats in androgen receptor



(B) DNA from tumor



(A) DNA from normal cell

### This result is consistent with a previous study

DNA replication error is frequent in ovarian granulosa cell tumors.

Suzuki M et al. Cancer Genet Cytogenet. (2000)



#### Figure 3 LOH (Loss of heterozygosity) for a number of STR markers



STR analysis with AmpFISTR SGM Plus PCR amplification kit



### Figure 3 LOH (Loss of heterozygosity) for a number of STR markers



STR analysis with AmpFISTR SGM Plus PCR amplification kit



### Table 1 Loss of heterozygosity in 15STR loci of the granulosa cell

| STR Loci | Location       | Alleles        | R <sup>a</sup>    |
|----------|----------------|----------------|-------------------|
| ТРОХ     | 2p23-2per      | 8, 8           | ND                |
| D2S1338  | 2q35-37.1      | 22, 23         | 1.63 <sup>b</sup> |
| D3S1358  | 3p21.31        | 15, 16         | 1.84 <sup>b</sup> |
| FGA      | 4q28           | 22, 23         | 1.01              |
| D5S818   | 5q21-31        | 5q21-31 11, 11 |                   |
| CSF1PO   | 5q33.3-34      | 10, 11         | 1.86 <sup>b</sup> |
| D7S820   | 7q11.21-22     | 10, 12         | 0.56 <sup>b</sup> |
| D8S1179  | 8q24.1-24.2    | 11, 11         | ND                |
| TH01     | 11p15.5        | 9, 9           | ND                |
| vWA      | 12p12-pter     | 14, 18         | 1.14              |
| D13S317  | 13q22-31       | 10, 13         | 0.94              |
| D16S539  | 16q24-qter     | 9, 11          | 1.11              |
| D18S51   | 18q21.3 14, 18 |                | 1.06              |
| D195433  | 19q12-13.1     | 13, 14         | 1.81 <sup>b</sup> |
| D21S11   | 21q11.2-q21    | 30, 31.2       | 2.12 <sup>b</sup> |

 $R = area (T_1/T_2)/(N_1/N_2)$ 

tumor

LOH is positive when  $R \ge 1.25$  or  $\le 0.8$  (ie., 20% change)

### Figure 4 Array comparative genomic hybridization (aCGH) analysis (B) DNA from tumor



#### Table 2 The deleted or duplicated clones and their physical location in the granulosa cell tumor

| 1 | arr 4p16.3q35.2(37,152-190,896,645)×1         | LOSS | 190,859,493 |
|---|-----------------------------------------------|------|-------------|
| 2 | arr 6p25.3q27(163,113-170,921,060)×2~3        | GAIN | 170,757,947 |
| 3 | arr 10p15.3q26.3(136,391-135,434,149)×1       | LOSS | 135,297,758 |
| 4 | arr 11p15.5q25(196,990-134,868,378)×2~3       | GAIN | 134,671,388 |
| 5 | arr 12p13.33q24.33(230,451-133,773,499)×2~3   | GAIN | 133,543,048 |
| 6 | arr 13q12.11q34(20,407,324-115,092,619)×2 ~ 3 | GAIN | 94,685,295  |
| 7 | arr 14q11.2q32.33(20,608,246-107,287,476)×1   | LOSS | 86,679,230  |
| 8 | arr 15q11.1q26.3(20,686,219-102,383,444)×2~3  | GAIN | 81,697,225  |
| 9 | arr 16q11.2q24.3(46,500,771-90,148,364)×1~2   | LOSS | 43,647,593  |
|   |                                               |      | ())         |

#### These results imply that

### A defective upstream regulatory gene is involved in this condition

DNA mismatch repair system failure appears likely in this patient



#### **Our Hypothesis**



#### Conclusions

 In addition to the FOXL2 402C>G mutation, we found DNA replication error and loss of heterozygosity in an adult-type granulosa cell tumor.

• DNA mismatch repair system failure appears likely in this patient.



#### Conclusions

It does suggest the need to incorporate DNA mismatch repair system examination into the clinical management of patients with granulosa cell tumor.



Wang and Lai Journal of Ovarian Research 2014, 7:88 http://www.ovarianresearch.com/content/7/1/88



#### **CASE REPORT**

**Open Access** 

### Molecular pathogenesis in granulosa cell tumor is not only due to somatic FOXL2 mutation

Wen-Chung Wang<sup>1</sup> and Yen-Chein Lai<sup>2\*</sup>

#### Thanks for your attention



### Table 1 Loss of heterozygosity in 15STR loci of the granulosa cell

| STR Loci | Location Alleles |                  | R <sup>a</sup>    |
|----------|------------------|------------------|-------------------|
| ТРОХ     | 2p23-2per        | 8, 8             | ND                |
| D2S1338  | 2q35-37.1        | 22, 23           | 1.63 <sup>b</sup> |
| D3S1358  | 3p21.31 Nea      | ar 15, 16        | 1.84 <sup>b</sup> |
| FGA      | 4q28 <b>ML</b>   | <b>H1</b> 22, 23 | 1.01              |
| D5S818   | 5q21-31          | 11, 11           | ND                |
| CSF1PO   | 5q33.3-34        | 10, 11           | 1.86 <sup>b</sup> |
| D7S820   | 7q11.21-22       | 10, 12           | 0.56 <sup>b</sup> |
| D8S1179  | 8q24.1-24.2      | 11, 11           | ND                |
| TH01     | 11p15.5          | 9, 9             | ND                |
| vWA      | 12p12-pter       | 14, 18           | 1.14              |
| D13S317  | 13q22-31         | 10, 13           | 0.94              |
| D16S539  | 16q24-qter       | 9, 11            |                   |
| D18S51   | 18q21.3          | 14, 18           | 1.06              |
| D195433  | 19q12-13.1       | 13, 14           | 1.81 <sup>b</sup> |
| D21S11   | 21q11.2-q21      | 30, 31.2         | 2.12 <sup>b</sup> |

 $R = area (T_1/T_2)/(N_1/N_2)$ 

tumor

LOH is positive when  $R \ge 1.25$  or  $\le 0.8$  (ie., 20% change)

#### **DNA** mismatch repair system

| Human     | Bacterial | Function                        | Chromosome | Start     | End       |
|-----------|-----------|---------------------------------|------------|-----------|-----------|
| MSH2      | MutS      | Single mismatch,<br>loop repair | 2p21       | 47403067  | 47512577  |
| MSH3      | MutS      | Loop repair                     | 5q11-12    | 8065648   | 80876815  |
| MSH4      | MutS      | Meiosis                         | 1p31       | 75796871  | 75913238  |
| MSH5      | MutS      | Meiosis                         | 6p21.3     | 31739948  | 31762678  |
| MSH6/GTBP | MutS      | Single mismatch                 | 2p16       | 47783082  | 47806953  |
| MLH1      | MutL      | Mismatch repair                 | 3p21.3     | 36993350  | 37050846  |
| PMS2      | MutL      | Mismatch repair                 | 7p22.2     | 5973239   | 6009106   |
| PMS1      | MutL      | Mismatch repair                 | 2q31.1     | 189784085 | 189877629 |

 These four genes were tested negative for somatic mutations.

