

3rd International Conference and Exhibition on **Nutrition & Food Sciences** September 23-25, 2014 Valencia, Spain

Cyanidin-3-O-glucoside ameliorates lipid and glucose accumulation in C57BL/6J mice via activation of PPAR-α and AMPK

Food Biomedical Science Lab. Yaoyao Jia Sep 23th, 2014

PPRE: peroxisome proliferator hormone response elements

Experimental design

- Molecular targets of C3G
- ✓ BIAcore Surface plasmon resonance (SPR)
- ✓ Time resolution-fluorescence resonance energy transfer (TR-FRET) coactivator assay
- ✓ AMPK activity assay

- D Physiological relevance & molecular mechanisms of C3G
- Body & organ weight measurement
- Plasma lipid, glucose, insulin & hormone measurement
- ✓ Liver & adipose tissue histology & analysis
- ✓ Liver lipid concentration measurement
- ✓ Oral glucose tolerance test (OGTT)
- ✓ Insulin tolerance test (ITT)
- Autophagy pathway analysis
- ✓ qPCR & immunobloting

C3G induces AMPK α 1 activity via direct interaction with AMPK α 1

C3G directly activates PPARα and AMPK

inhibits fatty acid synthesis

C3G induces phosphorylation of AMPK thus blocks the mTOR-S6K1 axis

C3G reduces plasma glucose & insulin concentrations and improves insulin sensitivity

PEPCK, Phosphoenolpyruvate carboxykinas; G6Pase, Glucose 6-phosphatase

C3G reduces body weight, visceral fat weight & adipocyte size

Adipocytes

HFD

Organ weight of mice

	ŀ	HFD	F	F		C3G
Epididymal Fat (g)	2.45 ±	± 0.16 ^a	2.43 ±	0.26 ^a	2.41	± 0.19 ^a
Visceral Fat (g)	1.67 ±	± 0.11ª	0.71 ±	: 0.09 ^{bc}	0.98	± 0.19°
Perirental Fat (g)	1.52 ±	± 0.10ª	1.02 ±	0.09 ^{bc}	1.19	± 0.15 ^{ac}
Total White Adipose Tissue (WAT, g)	5.63 ±	± 0.20 ^a	4.16 ±	0.42 ^{bc}	4.58	± 0.52 ^{ac}
Brown Adipose Tissue (BAT, g)	0.29	± 0.03 ^{ab}	0.22 ±	0.03 ^a	0.36	± 0.04 ^b
WAT/BAT	20.81 ±	± 2.07ª	19.90 ±	: 1.52ª	12.90	± 0.87 ^b
Skeletal Muscle (g)	0.68 ±	± 0.04ª	0.55 ±		0.76	± 0.06 ^a
WAT/Skeletal Muscle	8.43 ±	± 0.49 ^a	7.98 ±	: 0.58 ^{ab}	5.85	± 0.80 ^b
Liver (q)	1.59 ±	± 0.13ª	1.46 ±	: 0.05ª	1.37	± 0.17ª
Liver/Body weight	0.036 ±	± 0.002 ^a	0.040 ±	0.001 ^a	0.034	± 0.003 ^a

с^{ус,}

C3G increases energy expenditure via induces thermogenesis gene expressions in brown adipose tissue (BAT)

alpha;

Acknowledgement

Food Biomedical Science Lab.

- Supervisor
 - Prof. Sung-Joon Lee

• FBS lab. Members

- ✓ Ji Hae Lee
- ✓ Chunyan Wu
- ✓ Bobae kim
- ✓ Ji Ah Kim
- ✓ Soyoung Kim
- ✓ Boram Mok

Ewha Women's University

- Prof. Young-Suk Kim
 - ✓ Minyoung So

Thank you for your attention!