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Introduction

With the increasing interest for oil and gas exploration and development, low
permeability clastic rock reservoirs become the key prospecting target areas

|

The low permeability rock reservoirs have gone through complex diagenetic events, The
distribution of sandstone porosity is inconsistent with the hydrocarbon accumulation
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Geological background
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Structural map of Dongying Sag. The area in the
green line is the study area (After Liu et al, 2014)

The Dongying Sag is a sub-
tectonic unit lying in the
southeastern part of the Jiyang
Depression of the Bohai Bay
Basin, East China.

It is a half graben with a faulted
northern margin and a gentle
southern margin. In plan, this
sag is further subdivided into
several secondary structural
units, such as the northern steep
slope zone, middle upliftbelt,
and the Lijin, Minfeng,
Niuzhuang trough zones,
Boxing subsags, and the
southern gentle zone (Zhang et
al, 2014).




Geological background
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The sag is filled with Cenozoic
sediments, which are
formations from the
Paleogene, Neogene, and
Quaternary periods. The
formations from the
Paleogene period are the
Kongdian (Ek), Shahejie (Es),
and Dongying (Ed); the
formations from the Neogene
period are the Guantao (Ng)
and Minghuazhen (Nm); and
the formation from the
Quaternary period is the

Pingyuan (Qp).

Generalized Cenozoic Quaternary stratigraphy of the
Dongying Sag, showing tectonic and sedimentary
evolution stages and the major petroleum system

elements (After Yuan et al, 2015)




Geological background

During the depositon of the
third member of Shahejie
formation, tectonic movement
was strong, and the basin
_____ subsided rapidly reaching the
o maximum depth. Therefore,

: large amounts of detrital
materials were transported
into the basin and formed
plentiful source rock and
turbidite in deep-water
environment in hollow zone
, R X and uplifted zone. Most
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Materials and methods
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Over 1500 maters representative core of turbidite in the aim formation have been
descripted. After 119 typical samples drilling from the core, analysis and test items include
thin sections testing with 119 samples, measured property testing with 119 samples,
mercury injection testing with 90 samples, scanning electron microscopy (SEM) testing
with 15 samples, cathode luminescence testing with 17 samples, fluorescence thin section
testing with 17 samples, and fluid inclusion testing with 53 samples have been carried out.




Characteristics and petrophysical evolution

» Petrography

Quaiz,% € fine to medium
grained

€ quartz 29%-69.2%

& feldspar 14.3%-47%

€ the detritus content
Is 2%-44.2

4 mud content is
0.5%-48%

€ the cement content
is 0.5%-34.6 %

€ compositional
maturity is 0.414-
2.247

€ moderately sorted

€ with sub-angular or
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Triangular plot of rock types of the low
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Characteristics and petrophysical evolution
» Porosity-permeability
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porosity and permeability distribution

With an average porosity value of 17.15%

With an average permeability value of 38.11 X103 pm?

20.82% low porosity reservoirs, 69.18%,middle-high porosity reservoirs,
87.89% low permeability reservoirs and,12.11% high permeability reservoirs.




Characteristics and petrophysical evolution
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Types of reservoir space

€ The reservoir space contains primary pore, mixed pore , secondary pore and gap.

€ Primary pores include the remaining intergranular pore after compaction and
cementation and micropores in clay mineral matrix making up the main pore type

€ Dissolution expanding pore is the main kind of mixed pore

€ There are various kind of secondary pore and gaps containing dissolution pore in
particles and cement , moldic pore , intergranular micropores of kaolinite ,
microfracture and diagenetic contraction fracture.




Characteristics and petrophysical evolution
» The characteristics of pore throat structure

X Type | , ¥ Typell , 4 .0; Typelll,
K/ d=0. 07951(“"‘"‘”/ 1 K/ $=0.0684K""" ® i K/d=0.0551K"""
1 rR™=0.9978 ] R=0.9691 Q. ] R™=0.9265
< =ho
;2 0.1 4 v o \QU,I E
(] ] ¢ <
3 0.01 ‘; g 0.01 ¢ b
= c o
Q_.m 0.001 —- m 0.001 —-
0.001 0.01 0.1 X, 1{1) 5 " ml_ll 100 1000 0.001 0.01 0.1 K, |lO . Lllr(if 100 1000 0.001 0.01 0.1 K, l‘() . IJI'Illg 100 1000
Type | , Typell, Typelll,
10 K/d):O 0748KU.8809 10 K/(b:()- 059[((],7!]()8 10 K/(bzo‘ 0403K()n()eu
o ] R*=0.9629 e ] R=0.8611 < ] R™=0.9068
~ =
0 0.05 0.1 0.5 2 5 >5 » 4 ~
Pﬂ, MPa 0.1 0.1 0.1
Principle of pore-throat /
structures classification
100 - 0.001 0.01 0.1 1 ]‘(J 100 1000 0.001 0.01 0.1 1 5 10 5 100 1000 0.001 0.01 0.1 1 g IIEJ 100 1000
3 g IHA. K, 10 um K, 10 "1m K, 10 um
D 40 types of pore-throat structures
= . olllA® | 1A
20
- - Tvpe of pore-throat structure K/103m? K/® Py/Mpa Psy/Mpa
(@R 3 1A
% E IA >30.6 >1.5163 0.02-0.05 0.256-0.611
g ] '“g $ B 13.9-183.3371 0.6761-7.8465 0.06-1 0.16-1.263
1.5
'_Q 1 : ![:; . A 0.1532-34.3 0.0155-1.5402 0.15-0.5 0.484-4.412
(o)
%0 , ' 1B 0.037-1.9498 0.00561-0.1155 0.15-2 2.843-22.349
o.
@ 1A 0.0129-0.963 0.00273-0.05791 0.8-4 17.363-74.117
0.1 T T T TTTT T T TTTT
paraineters.o |sgcll?£e;rnéntzpressu1e B <0.109 <0.01086 38 47.801-73.529
p

pore-throat structures
classification

Physical property distribution of different types of pore-throat




Characteristics and petrophysical evolution

» Diagenesis features
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o

V3
() Dongkel, 3333. 65m (SE) ;
Ankerite dissolution pore

(m) Nan, 3403.35m (-) ; (n) Hel55, 2987, 04m (SE) ; (p) Wangxie 543, 3 (SE) ;
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Q-Quartz; F-Feldspar; R-Rock frangmants ; M-Matrix ; Qa-Quartz overgrowth; Ka-Kaolinite; Il-Illite; Cc-Carbonate cement ; FD-Feldspar dissolution ;
CD-Carbonate dissolution; PP-Primarily pore; (-) plane-polarized light; (CL) athode luminescencec; (SE) scanning electron microscope

diagenesis characteristics

€ The major diagenetic
events in the reservoir
research area include
compaction, cementation,
metasomasis and
dissolution.

€ Grain arranged mainly due
to point contacts and
point-line contacts are
reflecting moderate
compaction.

€ The sandstones are
mainly carbonate
cemented. The first
groups of carbonate
cements are calcite and
ferroan calcite. The
second groups of
carbonate cements are
dolomite, ankerite.




Characteristics and petrophysical evolution

» Diagenesis features
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(d) Hel35 , 3030.87m (CL) ; Quartz overgrowth
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Ankerite dissolution pore
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CD-Carbonate dissolution; PP-Primarily pore; (-) plane-polarized light; (CL) athode luminescencec; (SE) scanning electron microscope

diagenesis characteristics

€ Quartz overgrowth is the

main kind of siliceous
cementation. Two periods
of quartz overgrowth can
be identified by
cathodoluminescence
microscope.

The early period of quartz
overgrowth is dark black
and the later period is
brown .Kaolinite is the
most important kind of
clay minerals

The dissolution of
feldspar, lithic fragment ,
carbonate cements and
other minerals which are
unstable in the acid
environment can form
honeycomb and curved
shape dissolution
expanding pore




Characteristics and petrophysical evolution

» Paragenesis of Diagenetic minerals
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On the basis of
previous studies
(Jiang et al, 2003),
two periods of
hydrocarbon
accumulation can
be identified. The
first period of
hydrocarbon
accumulate from
27.5-24.6Ma, and
the second period
from 13.8-now.

ankerite replaced calcite and ankerite replaced ferroan calcite.

€ Metasomasis between carbonate cements ,carbonate cements and
clastic ,kaolinite and feldspar ,all occurred. Metasomasis between carbonate
cements contains dolomite replaced calcite, ferroan calcite replaced calcite,




Characteristics and petrophysical evolution
» Paragenesis of Diagenetic minerals

early Siderite/micritic carbonate

first dissolution of feldspar

the beginning of first hydrocarbon filling

first quartz overgrowth/authigenic kaolinite precipitation

the second period of carbonate cementation

the end of first hydrocarbon filling

dissolution of quartz/feldspar overgrowth

second dissolution of feldspar and carbonate cementation

the beginning of second hydrocarbon filling

second quartz overgrowth/authigenic kaolinite precipitation
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later the third period of carbonate cementation/pyrite cementation

Paragenesis of Diagenetic minerals of turbidite reservoir



Characteristics and petrophysical evolution

» petrophysical evolution of low-permeability turbidity reservoirs

permeability recovery method has been employed during the period of geological
history of the reservoir

® Firstly, take the thin sections of the
reservoir as study object. After the
analysis of the paragenetic sequence
and diagenetic fluid evolution, combine
with the study of burial history to
determine the geological time and
burial depth of diagenetic events.

® Secondly, fit the function of plane

porosity and visual reservoir porosity
from the analysis of thin sections, and
then we can calculate the contribution in
terms of porosity enhancement or
decrease of different dissolution pores
and authigenic minerals

® After the calculation of initial porosity,
the evolution of porosity can be
recovered with the principle of
inversion and back-stripping constraint
by Paragenesis of Diagenetic .

Thirdly, the evolution history of actual
porosity for geological time can be
established quantitatively combined with
the mechanical and thermal compaction
correction

® Fourthly, on the characteristics of pore
throat structure, according to back-
stripping constraint result of plane
porosity and the principle of equivalent
expanding the pore throat structures of
reservoirs can be recovered.

Finally, according to the relationship
between pore throat structure and
porosity, the evolution of permeability in
geological time can be recovered with
the relationship of porosity and
permeability in various throat structure.




Characteristics and petrophysical evolution
» petrophysical evolution of low-permeability turbidity reservoirs
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€ Taking the turbidite reservoir of well Niu 107 in 3025.5m as example ,the
recovery permeability is 0.31X10-3um? close to the actual measurement
permeability 0.307 X 10-3um?. So, this kind of method is accurate and reliable.
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» petrophysical evolution of low-permeability turbidity reservoirs
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Distribution model of diagenetic facies

€ Thin sandstones mainly develop strong compaction diagenetic facies (A) and
strong cementation diagenetic facies (B). Thick sandstones develop diagenetic
facies (A) and diagenetic facies (B) in the reservoirs adjacent to mudstones and
strong dissolution diagenetic facies (C) and middle dissolution diagenetic facies (D)
in the middle of sandstones.




Characteristics and petrophysical evolution
» petrophysical evolution of low-permeability turbidity reservoirs
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petrophysical evolution of different diagenetic facies



Petrophysical constraint

» Petrophysical constraint of turbidite reservoirs in the accumulation period

test data of water interfacial
tension at different temperature

! !

the function between water inter
facial tension and temperature

mercury injection data

v
v pore structure
the lower limit of the largest connected types of reservoir

pore throat radius under the conditions
of different formation temperature

Y Y

and accumulation dynamics function between relationship between
. reservoir connectivity reservoir properties of
L of the pore throat the pore throat
Y radius and permeability structure type

penetration limits of effective reservoir under the
conditions of differentformation temperature
and accumulation dynamics

Y Y

Y
porosity limits of effective reservoir under the conditions
of different formation temperature and accumulation dynamics

Technology flowchart of the properties of the lower limit under accumulation
dynamics and constraints of pore structure in effective reservoir



Petrophysical constraint

» Petrophysical constraint of turbidite reservoirs in the accumulation period
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Petrophysical constraint

» Petrophysical constraint of turbidite reservoirs in the accumulation period

temperature ( T) H oil-water interfacial tension () H r,=20c0s0/P;

e, MPa
=

Accumulation dynamic forc

001 001 0.1 1
i

Porosity and permeability cutoffs in accumulation time at 75 C
Permeability cutoff, 10 ‘um Porosity cutoff,%

100100 00%010 § 10 15 20

25 0.001 001 0.0 1
Fofl

Porosity and permeability cutofts in accumulation time at 100 C
Porosity cutoff,s

Permeability cutoff, 10 'um

T T 1T 0 1 711

=)
T

Accumulation dynamic force,MPa

1=

Accumulation dynamic forc c‘__,;M Pa

in=

10 100 1000 0

0

Accumulation dynamic force,MPa

01—

5

10

15

20

=

105

I

T

I

T

I LT 4 R

1A~

Accumulation dynamic force,MPa

105

Porosity and permeability cutoffs in accumulation time at 125 C
Permeability cutoff, 10 'um i

25 0.001 001 01 1
£ 0

10 100 008010

Accumulation dynamic force.MPa

Porosity cutoff,’
] 10 15 20 2

01F

2
LI LU NI LA L 4

Physical property constraints under different formation
temperatures of the low permeability turbidite reservoirs




property and dynamics of a reservior in accumulation period

» Accumulation dynamics recovery

By means of fluid inclusion PVT simulation, the minimum fluid pressure in

hydrocarbon accumulation period can be obtained.

Basin modelling technique, fluid pressure after disequilibrium compaction can be
determined (the balance pressure between sandstones and mudrocks).

the fluid
pressure
generated by
hydrocarbon
generation is
1.4 Mpa to
11.3 Mpa with
an average of
5.14 Mpa and
the surplus
pressure is
1.8 Mpa to
12.6 Mpa with
an average of
6.3 Mpa in the
early
accumulation
period

press
Paleopr ure
palae hydro The
Paleo-fl essure Geolo gener
oburi static surplus pressur accumu
Depth/ uid after gical ate by
Well al press pressur e lation
m pressur uncomp time/ hydro
depth ure e /Mpa coefficie period
e /Mpa acting Ma carbo
s /m /Mpa nt
/Mpa n
/Mpa
Xinl54 2936 31.9 31.2 23 2800 28 0.7 3.9 1.14 later
Xin 154 2939 22 19.5 27.5 1950 19.5 2.5 2.5 1.13 early
Xin 154 2939 26.8 23.5 7.5 2350 23.5 3.1 33 1.14 later
Xin 154 2942.8 29.6 28 2.3 2800 28 1.6 1.06 later
Niu 108 3146.5 23.8 22 253 2200 22 1.4 1.8 1.08 early
Niu 108 3146.5 33.2 20 11 2000 20 11.6 13.2 1.66 later
Niu 108 3146.5 18.6 20 11 2000 20 0.93 later
Niu 35 2991.7 22.3 21 9.8 2100 21 0.9 1.3 1.06 later
Niu 107 3272.5 34.6 22.9 9.5 2290 22.9 10.7 11.7 1.51 later
Shil28 3099 333 28.5 2.6 2850 28.5 1.1 4.8 1.17 later
Shi 128 3099 27.8 21.4 9.3 2140 21.4 5.8 6.4 1.30 later
Niu 20 3073 43 26.8 3 2680 26.8 12.7 16.2 1.60 later
Niu 20 3073 28.3 21.5 9.1 2150 21.5 5.8 6.8 1.32 later
Niu 24 3159.2 27.9 21.5 25.9 2150 21.5 3.6 6.4 1.30 early
Niu 24 3159.2 29.1 24.5 6 2450 24.5 3.7 4.6 1.19 later
Niu 24 3159.2 32.9 27.1 3.6 2710 27.1 1.7 5.8 1.21 later
Niu 24 3175.6 38.6 26.3 4.7 2630 26.3 11.3 12.3 1.47 later
Niu 24 3175.6 32.2 24 24.8 2400 24 6.9 8.2 1.34 early
Niu 24 3175.6 36.6 24 24.8 2400 24 11.3 12.6 1.53 early
Niu 24 3175.6 27 23.5 9.8 2350 23.5 33 3.5 1.15 later
Niu 24 3175.6 26.4 23.5 9.8 2350 23.5 2.7 2.9 1.12 later

Accumulation dynamics recovery of the low
permeability turbidite reservoirs

The fluid
pressure
generated by
hydrocarbon
generation is
0.7 Mpa to 12.7
Mpa with an
average of 5.36
Mpa and the
surplus
pressure is 1.3
Mpa to 16.2
Mpa with an
average of 6.55
Mpa in the
later
accumulation
period.




property and dynamics of a reservior in accumulation period

» The dynamics and physical property coupled with regard to hydrocarbon
accumulation period
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Property evolution of low-permeability turbidity reservoirs in geological time

10X 10-3um2to 4207.3 X 10-3um2in the early accumulation period

0.015X103um?2to 62X 10-3um?in the later accumulation period




property and dynamics of a reservior in accumulation period

» The dynamics and physical property coupled with regard to hydrocarbon
accumulation period
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10X 103um2to 4207.3 X 103um2in the early accumulation period

no fault- the pressure generated by hydrocarbon generation is the main
accumulation dynamics. It is 1.4 Mpa to 11.3 Mpa . The maximum petrophysical
constraint in accumulation period under the formation temperature of 125°C is
0.058 X 10-3um?. All types of reservoirs can accumulate hydrocarbon.

With fault -the surplus pressure is the main accumulation dynamics. The
surplus pressure is 1.8 Mpa to 12.6 Mpa . The maximum petrophysical
constraint in accumulation period under the formation temperature of 125°C is
0.037 X103um?. All types of reservoirs can accumulate hydrocarbon.




property and dynamics of a reservior in accumulation period

» The dynamics and physical property coupled with regard to hydrocarbon
accumulation period
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0.015X103um?to 62X 10-3um?in the later accumulation period
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no fault- the pressure generated by hydrocarbon generation is 0.7 Mpa to 12.7
Mpa . The petrophysical constraint is from 0.001 to 0.203 X 10-3um? .
Reservoir with diagenetic facies (A) and diagenetic facies (B) don’t develop
accumulation conditions in low accumulation dynamic.

With fault -the surplus pressure is 1.3 Mpa to 16.2 Mpa . The petrophysical
constraint is from 0.0007 to 0.066 X 10-3um?. Reservoir with diagenetic facies
(A) and diagenetic facies (B) don’t develop accumulation conditions in low
accumulation dynamic.




property and dynamics of a reservior in accumulation period

» Distribution of hydrocarbon resources

immature source rock in Es3z immature source rock in Es3z

early accumulaton period (34-24. 8Ma) later accumulaton period (13. 8-0Ma)

sens [T N I B 1= [—] [(—] [\

High propertyLow property Early hyd— Later hyd— Oil-source Carbonate Early hydrocar— Later hydrocar—Overpressurg
sandstone sandstone rocarbons rocarbons fault cement  bons migration bons migration  fracture

The hydrocarbon accumulation patterns of low permeability turbidite reservoirs

B in the early accumulation period :the sand body with oil source fault development
connected with source rock is easy to accumulate hydrocarbon.

® in the later accumulation period :

» The hydrocarbon-filling degree is higher when the burial depth of turbidite
reservoirs is more than 3000 m. The isolated lenticular sand bodies can
accumulate hydrocarbon.

» When the burial depth of turbidite reservoir is less than 3000 m, the isolated
lenticular sand bodies cannot accumulate hydrocarbon.




property and dynamics of a reservior in accumulation period

» Distribution of hydrocarbon resources
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The hydrocarbon distribution regularities of the low permeability turbidite reservoirs of Es3z in Dongying sag

The oil-source faults controlled the accumulation of reservoirs. For flat surface,
taking Niuzhuang subsag as example, hydrocarbon always accumulated in
reservoirs around the oil-source faults and areas near the center of subsag with
high accumulation dynamics.




Conclusions

€ Turbidite sandstones from Es3z in Dongying Sag are mostly lithic arkoses,
and composed of mainly fine to medium sized grains. Low permeability
reservoirs with middle to high porosity are most common, the reservoir
space is mainly primary. There are six types of pore throat structures. The
major diagenetic events observed are mechanical compaction,
cementation, metasomasis and dissolution.

€ The paragenesis diagenetic minerals noted in this study are determined:
Siderite/micritic carbonate—first dissolution of feldspar —the beginning
of first hydrocarbon filling—first quartz overgrowth/authigenic kaolinite
precipitation—the second period of carbonate cementation—the finish of
first hydrocarbon filling—dissolution of quartz/feldspar
overgrowth—second dissolution of feldspar and carbonate
cementation—the beginning of second hydrocarbon filling—second
quartz overgrowth/authigenic kaolinite precipitation—the third period of
carbonate cementation/pyrite cementation. Compaction existed
throughout the whole burial and it is an evolutional process.




Conclusions

€ Except reservoirs with diagenetic facies(A), other turbidite reservoirs from
Es3z in Dongying sag during the early accumulation period are middle to
high permeability ranging from 10 X10-3um?to 4207.3 X10-3um?2, and all
types of reservoirs can accumulate hydrocarbon. In the later
accumulation period, except those with diagenetic facies(C) other
reservoirs are all low permeability ones ranging from 0.015 X10-3um?to
62 X10-3um?, and all types of reservoirs can form hydrocarbon
accumulation with high accumulation dynamics. Reservoir with
diagenetic facies (A) and diagenetic facies (B) don’t develop accumulation
conditions with low accumulation dynamics.

€ The hydrocarbon-filling degree is higher when the burial depth of turbidite
reservoirs is more than 3000 m. The isolated lenticular sand bodies can
accumulate hydrocarbon. When the burial depth of turbidite reservoir is
less than 3000 m, the isolated lenticular sand bodies cannot accumulate
hydrocarbon. Hydrocarbons have been always accumulated in reservoirs
around the oil-source faults and areas near the center of subsag with high
accumulation dynamics.
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