

FACULTY OF SCIENCE

Cochlear involvement in tinnitus

HELMY (WHAM) MULDERS

Tinnitus

Tinnitus affects 5-15% of population.

Can severely affect quality of life

No cure yet

Strong correlation with hearing loss - Prevalence increasing

What is the neural substrate of tinnitus? Perception-abnormal neuronal activity

Changes in the brain after hearing loss: Possible mechanisms for tinnitus

- 1. Changes in tonotopic maps
- 2. Synchronous activity between central structures

3. Increased spontaneous activity (hyperactivity) in central auditory pathway

Note: several theories suggest these changes in the auditory system are accompanied/modulated by changes in non-auditory parts of the brain.

Our guinea pig model to study central hyperactivity and tinnitus

Our animal model to study tinnitus:

THE UNIVERSITY OF Western Australia

Hyperactivity shows correlation with region of hearing loss

Human studies:

Audiogram vs tinnitus pitch: frequencies of hearing loss closely match pitch of perceived tinnitus

Measuring tinnitus in animals

gap prepulse inhibition of the acoustic startle (GPIAS)

Startle response

Turner et al. 2006

The University of Western Australia

Our guinea pig model: central hyperactivity and tinnitus

Can we modulate the central hyperactivity?

http://www.neuroreille.com/promenade/english/audiometry/ex_ptw/explo_ptw.htm

1-6 weeks recovery: <u>Acute</u> destruction of auditory nerve after recovery period eliminates hyperactivity

Post recovery-pre-ablation

THE UNIVERSITY OF WESTERN AUSTRALIA

8-12 weeks recovery: Acute destruction of auditory nerve does NOT completely eliminate hyperactivity

The University of Western Australia

Central Hyperactivity-a two stage process?

The Big Question

In stage 1: Reduction spontaneous activity in auditory nerve: hyperactivity

In stage 1: Reduction spontaneous activity in auditory nerve: tinnitus

How can we suppress spontaneous activity of the auditory nerve fibres?

Possibility: Furosemide

- Loop diuretic (affecting membrane transport).
- Known to affect kidney and inner ear
- Decreases spontaneous firing rate auditory nerve fibres (Sewell 1984)
- Can suppress tinnitus in human subjects (Risey et al 1995; Caesarani et al. 2002)

Can we modulate hyperactivity and tinnitus in our animal model using furosemide?

Furosemide acutely decreases spontaneous firing auditory afferent nerve fibres (SNN) and central hyperactivity

Saline i.p. has no effect on behavioural signs of tinnitus

Furosemide i.p. eliminates behavioural signs of tinnitus

In conclusion

- Our data suggest that furosemide can suppress the behavioural signs of tinnitus in our animal model.
- Our data strengthens the argument that hyperactivity is involved in the generation of tinnitus.
- Our data supports the notion that there may be a therapeutic window for some time after acoustic trauma.

What's next?

- Can we show proof of principle in human tinnitus sufferers? (collaboration Prof Friedland; Ear Science Institute Australia)
- Investigations into more chronic effects of furosemide on tinnitus. (Mulders et al. 2014 Frontiers in Neuroscience)

Other options beside furosemide?

What about treatments for centralized tinnitus?

A different way to modulate activity in the cochlea: Extra-cochlear electrical stimulation (ECES)

- ECES with positive current can suppress activity of auditory nerve
- Suppression of tinnitus reported using ECES with positive direct current
- Mechanism unknown-due to reduction of central hyperactivity?

Only small effect on thresholds and tone-induced activity of IC neurons.

ECES may be a viable approach for suppressing some forms of (peripheral-dependent) tinnitus.

THE UNIVERSITY OF Western Australia

Acknowledgements:

Action on Hearing Loss (UK)

Neurotrauma Research Program

NHMRC

MHRIF

Auditory lab members

A/Prof. Jenny Rodger (University of Western Australia)

Dr Arnaud Norena (Universite de Marseille, France)

Prof Tony Paolini (RMIT, Australia)

Prof Richard Salvi (University of Buffalo, USA)

The University of Western Australia

1-6 weeks recovery: <u>Acute</u> but temporary silencing of auditory nerve after recovery period eliminates hyperactivity

What's next?

- Can we show proof of principle in human tinnitus sufferers? (collaboration ESIA)
- Investigations into more chronic effects of furosemide on tinnitus.
- Other options beside furosemide?

What about treatments for centralized tinnitus?

Repetitive Transcranial Magnetic Stimulation (rTMS)

- Therapeutic effects on many neurological and psychiatric disorders
- Non-invasive
- Some success reported in tinnitus patients

Vooys 2014; Huerta and Volpe, 2009; (Khedr et al., 2008, Langguth et al., 2008, Khedr et al., 2010 University of Western Australia

rTMS frequency protocol

High frequency rTMS – excites neuronal activity

Low Frequency rTMS – inhibits neuronal activity

Can rTMS suppress hyperactivity after hearing loss?

10 Guinea Pigs

Coil size and position

10minute sessions, 1 Hz, Monday – Friday for 2 weeks

Vooys 2014 In preparation

The University of Western Australia

rTMS does not affect hearing loss but reduces hyperactivity

Can rTMS reduce the behavioural signs of tinnitus in our animal model?

Preliminary data: possible effect rTMS on tinnitus?

- Is rTMS affecting descending pathways from the cortex?
- Direct effect on IC?

N=3/group

Further ongoing studies

- Modulation of hyperactivity by paraflocculus (Darryl Vogler)
- Modulation of hyperactivity and tinnitus by limbic system (Kristin Barry and Prof Tony Paolini RMIT University Melbourne)
- Projection patterns of descending auditory systems (Ahmaed Bashaar)
- Effects of cochlear electrical stimulation on hyperactivity and tinnitus
- Testing validity of GPIAS in human subjects (Prof. Geoff Hammond, ESIA)
- Effects of rTMS on hyperactivity and tinnitus (A/Prof. Jenny Rodger)
- Proof of principle experiment effect of furosemide in tinnitus subjects (ESIA and Prof Peter Friedland)

Neural substrates of tinnitus

Human studies:

Neuroimaging data: Excessive spontaneous activity in auditory structures

Audiogram vs tinnitus pitch: frequencies of hearing loss closely match pitch of perceived tinnitus

Animal studies: (models of hearing loss)

Electrophysiology: Increased spontaneous activity in auditory structures

Audiogram vs tinnitus pitch: Increased spontaneous activity associated with frequency range of hearing loss and behavioral signs of tinnitus correlate with Increased spontaneous activity/ frequency range of hearing loss

Brain Area

Measuring brain activity

- Depth
- CF (characteristic frequency) and threshold
- Spontaneous firing rate
- 90-120 neurons per animal

Picture courtesy C. Bester

Experiment 1:

Dong et al. Neurosci. 2009

Dong et al. Eur. J. Neurosci. 2010

Dong et al. Brain Res. 2010

GABRA1

*