Tuning wave propagation in soft phononic crystals via large deformation and multi-field coupling effect

Bin Wu, <u>Weiqiu Chen</u>

Department of Engineering Mechanics Zhejiang University, Hangzhou, China E-mail: chenwq@zju.edu.cn

Outline

> Introduction

- > Nonlinear axisymmetric deformations
- > Actuation of the DE cylinder with
 - periodic electrical boundary conditions
- Dispersion relations (incremental L waves)
- > Numerical results
- > Conclusions

Band gaps

Tuning band gaps

- Rotating the scatters (Goffaux and Vigneron, 2001)
- Making use of the effect of multifield coupling (Hou et al., 2004; Robillard et al., 2009; Yeh, 2007)
- Mechanical means: Prestress (Huang et al., 2014)
- Mechanical means: Large deformation (Bertoldi et al., 2008)

Some recent works

(a)

Tunable lattice phononics Huang et al. AMSS (2018)

> Tunable phononics with crisscrossed elliptical holes Gao et al. In preparation

Some recent works

Outline

Introduction

- > Nonlinear axisymmetric deformations
- > Actuation of the DE cylinder with
 - periodic electrical boundary conditions
- Dispersion relations (incremental L waves)
- > Numerical results
- > Conclusions

A soft DE cylinder with flexible electrodes:(a) undeformed configuration; (b) activated configuration.

> Ideal compressible dielectric elastomer (DE) model:

$$W = W_{\text{elas}} + \frac{1}{2\varepsilon J} \lambda_3^2 D_{L3}^2, \quad J = \lambda_1 \lambda_2 \lambda_3, \quad \varepsilon = \varepsilon_0 \varepsilon_r,$$

$$W_{\text{elas}}^{nH} = \frac{\mu}{2} (I_1 - 3) - \mu \ln J + \frac{\Lambda}{2} (J - 1)^2, \quad I_1 = \lambda_1^2 + \lambda_2^2 + \lambda_3^2,$$
$$W_{\text{elas}}^G = -\frac{\mu J_m}{2} \ln \left(1 - \frac{I_1 - 3}{J_m} \right) - \mu \ln J + \left(\frac{\Lambda}{2} - \frac{\mu}{J_m} \right) (J - 1)^2$$

 μ --- initial shear modulus; Λ --- first Lame's parameter;

K---bulk modulus; ε ---permittivity of the elastomer;

 J_m --- Gent constant reflecting the limiting chain extensibility.

Galich PI and Rudykh S (2016) Manipulating pressure and shear waves in dielectric elastomers via external electric stimuli. *Int. J. Solids Struct.* 91: 18-25.
 Galich PI, Fang NX, Boyce MC and Rudykh S (2017) Elastic wave propagation in finitely deformed layered materials. *J. Mech. Phys. Solids* 98: 390-410.

➢ For neo-Hookean model:

$$\sigma_{11} = \sigma_{22} = \mu J^{-1} \left(\lambda_1^2 - 1 \right) + \Lambda \left(J - 1 \right) - D_3^2 / (2\varepsilon),$$

$$\sigma_{33} = \mu J^{-1} \left(\lambda_3^2 - 1 \right) + \Lambda \left(J - 1 \right) + D_3^2 / (2\varepsilon), \quad E_3 = D_3 / \varepsilon$$

≻ For Gent model:

$$\sigma_{11} = \sigma_{22} = \mu J^{-1} \left(\frac{J_m}{J_m - I_1 + 3} \lambda_1^2 - 1 \right) + \left(\Lambda - \frac{2\mu}{J_m} \right) (J - 1) - \frac{D_3^2}{2\varepsilon},$$

$$\sigma_{33} = \mu J^{-1} \left(\frac{J_m}{J_m - I_1 + 3} \lambda_3^2 - 1 \right) + \left(\Lambda - \frac{2\mu}{J_m} \right) (J - 1) + \frac{D_3^2}{2\varepsilon}, E_3 = \frac{D_3}{\varepsilon}$$

> Electric voltage applied to the electrodes:

$$V = -E_3 l = -\frac{D_3}{\varepsilon} \lambda_3 L, \quad \overline{V}^2 = \overline{D}_3^2 \lambda_3^2, \quad \overline{V} = \frac{V}{L} \sqrt{\frac{\varepsilon}{\mu}}, \quad \overline{D}_3 = \frac{D_3}{\sqrt{\mu\varepsilon}}$$

Traction boundary condition on the cylindrical surface and axial force condition:

$$\sigma_{11} = \sigma_{22} = 0, \quad \sigma_{33} = \frac{N}{\pi r_0^2} = \frac{N}{\pi \lambda_1^2 R_0^2}$$

➢ For neo-Hookean model:

$$\overline{\sigma}_{11} = \frac{\sigma_{11}}{\mu} = \overline{\sigma}_{22} = \frac{\sigma_{22}}{\mu} = \frac{1}{J} \left(\lambda_1^2 - 1 \right) + \overline{\Lambda} \left(J - 1 \right) - \frac{V^2}{2\lambda_3^2} = 0,$$

$$\overline{\sigma}_{33} = \frac{\sigma_{33}}{\mu} = \frac{1}{J} \left(\lambda_3^2 - 1 \right) + \overline{\Lambda} \left(J - 1 \right) + \frac{\overline{V}^2}{2\lambda_3^2} = \frac{\overline{N}}{\lambda_1^2}, \quad \overline{\Lambda} = \frac{\Lambda}{\mu}, \quad \overline{N} = \frac{N}{\pi \mu R_0^2}$$

≻ For Gent model:

$$\overline{\sigma}_{11} = \overline{\sigma}_{22} = \frac{1}{J} \left(\frac{J_m}{J_m - I_1 + 3} \lambda_1^2 - 1 \right) + \left(\overline{\Lambda} - \frac{2}{J_m} \right) (J - 1) - \frac{\overline{V}^2}{2\lambda_3^2} = 0,$$

$$\overline{\sigma}_{33} = \frac{1}{J} \left(\frac{J_m}{J_m - I_1 + 3} \lambda_3^2 - 1 \right) + \left(\overline{\Lambda} - \frac{2}{J_m} \right) (J - 1) + \frac{\overline{V}^2}{2\lambda_3^2} = \frac{\overline{N}}{\lambda_1^2}$$

Outline

> Introduction

- > Nonlinear axisymmetric deformations
- Actuation of the DE cylinder with periodic electrical boundary conditions
- Dispersion relations (incremental L waves)
- > Numerical results
- > Conclusions

Loading paths

Path A (fixed axial pre-stretch)

 $\overline{V} = 0, \quad \overline{\sigma}_{11} = \overline{\sigma}_{22} = 0, \quad \overline{\sigma}_{33} = \overline{N} / \left(\lambda_1^{pre}\right)^2$ $\lambda_1^{pre}, \lambda_3^{pre}$ in terms of N. > Second: Keep the pre-stretch, and apply an electric voltage

$$\lambda_{3}^{pre} = \lambda_{3}, \quad \overline{\sigma}_{11} = \overline{\sigma}_{22} = 0$$

 λ_1, λ_3 in terms of V and λ_3^{pre} .

Path B (fixed axial force)

Outline

- Introduction
- > Nonlinear axisymmetric deformations
- > Actuation of the DE cylinder with
 - periodic electrical boundary conditions
- Dispersion relations (incremental L waves)
- > Numerical results
- > Conclusions

1D Incremental equations

- Using the perturbation method, the linearized incremental constitutive equations in Lagrangian description:
 - $$\begin{split} \dot{S}_{11} &= \mathcal{A}_{11}\dot{\lambda}_{1} + \mathcal{A}_{12}\dot{\lambda}_{2} + \mathcal{A}_{13}\dot{\lambda}_{3} + \mathcal{B}_{1}\dot{D}_{L3}, \quad \dot{S}_{22} &= \mathcal{A}_{12}\dot{\lambda}_{1} + \mathcal{A}_{22}\dot{\lambda}_{2} + \mathcal{A}_{23}\dot{\lambda}_{3} + \mathcal{B}_{2}\dot{D}_{L3}, \\ \dot{S}_{33} &= \mathcal{A}_{13}\dot{\lambda}_{1} + \mathcal{A}_{23}\dot{\lambda}_{2} + \mathcal{A}_{33}\dot{\lambda}_{3} + \mathcal{B}_{3}\dot{D}_{L3}, \quad \dot{E}_{L3} &= \mathcal{B}_{1}\dot{\lambda}_{1} + \mathcal{B}_{2}\dot{\lambda}_{2} + \mathcal{B}_{3}\dot{\lambda}_{3} + \mathcal{C}\dot{D}_{L3}, \end{split}$$

$$\mathcal{A}_{ij} = \mathcal{A}_{ji} = \frac{\partial^2 W}{\partial \lambda_i \partial \lambda_j}, \quad \mathcal{B}_j = \frac{\partial^2 W}{\partial \lambda_j \partial D_{L3}}, \quad \mathcal{C} = \frac{\partial^2 W}{\partial D_{L3}^2}$$

Stress relaxation condition: $\dot{S}_{11} = \dot{S}_{22} = 0$

> 1D incremental constitutive equations in Lagrangian description:

$$\dot{S}_{33} = \mathcal{A}^{e}\dot{\lambda}_{3} + \mathcal{B}^{e}\dot{D}_{L3}, \quad \dot{E}_{L3} = \mathcal{B}^{e}\dot{\lambda}_{3} + \mathcal{C}^{e}\dot{D}_{L3},$$
$$\mathcal{A}^{e} = \mathcal{A}_{33} - \mathcal{A}_{13}\mathcal{P}_{11} - \mathcal{A}_{23}\mathcal{P}_{21}, \quad \mathcal{B}^{e} = \mathcal{B}_{3} - \mathcal{A}_{13}\mathcal{P}_{12} - \mathcal{A}_{23}\mathcal{P}_{22},$$
$$\mathcal{C}^{e} = \mathcal{C} - \mathcal{B}_{1}\mathcal{P}_{12} - \mathcal{B}_{2}\mathcal{P}_{22}, \quad \mathcal{P} = \begin{bmatrix} \mathcal{A}_{11} & \mathcal{A}_{12} \\ \mathcal{A}_{12} & \mathcal{A}_{22} \end{bmatrix}^{-1} \begin{bmatrix} \mathcal{A}_{13} & \mathcal{B}_{1} \\ \mathcal{A}_{23} & \mathcal{B}_{2} \end{bmatrix}$$

1D Incremental equations

Utilizing push-forward operation, 1D incremental constitutive equations in Eulerian description:

$$\dot{S}_{033} = J^{-1}\lambda_{3}\dot{S}_{33} = \mathcal{A}_{0}e + \mathcal{B}_{0}\dot{D}_{L03}, \quad \dot{E}_{L03} = \lambda_{3}^{-1}\dot{E}_{L3} = \mathcal{B}_{0}e + \mathcal{C}_{0}\dot{D}_{L03}, e = \dot{\lambda}_{3} / \lambda_{3}, \quad \dot{D}_{L03} = J^{-1}\lambda_{3}\dot{D}_{L3}, \quad \mathcal{A}_{0} = J^{-1}\lambda_{3}^{2}\mathcal{A}^{e}, \quad \mathcal{B}_{0} = \mathcal{B}^{e}, \quad \mathcal{C}_{0} = J\lambda_{3}^{-2}\mathcal{C}^{e} > 1D incremental governing equations:
$$\operatorname{div}\dot{\mathbf{S}}_{0} = \rho \mathbf{u}_{,tt}, \quad \dot{S}_{033,3} = \rho w_{,tt}, \operatorname{div}\dot{\mathbf{D}}_{L0} = 0, \quad \dot{D}_{L03,3} = 0, \quad \dot{D}_{L03} = \text{constant}$$$$

ID equation of motion governing the time-harmonic incremental L waves:

$$\frac{d^2 w}{dz'^2} + \varpi^2 \kappa^2 w = 0, \quad z' = \frac{z}{l}, \quad \kappa^2 = \frac{\overline{\rho}}{\overline{\mathcal{A}}_0}, \quad \overline{\mathcal{A}}_0 = \frac{\mathcal{A}_0}{\mu},$$
$$\overline{\rho} = \rho / \rho_0, \quad \overline{\omega}^2 = \lambda_3^2 \Omega^2, \quad \Omega^2 = \omega^2 \rho_0 L^2 / \mu$$

Dispersion relations

 ➢ Incremental displacement and stress: w(z') = M₊e^{i∞κz'} + M₋e^{-i∞κz'}, Š₀₃₃ (z') = i∞κA₀ (M₊e^{i∞κz'} - M₋e^{-i∞κz'})/l + B₀D
 L03

 ➢ Bloch-Floquet relation at the interfaces: w(1) = w(0)exp(iq), Š₀₃₃ (1) = Š₀₃₃ (0)exp(iq)

 ✓ The voltage applied to the cell is kept invariant:

$$\dot{V} = -\int_{0}^{l} \dot{E}_{L03} dz = 0$$
 $l\dot{D}_{L03} = \mathcal{B}_{0} \left[w(0) - w(1) \right] / \mathcal{C}_{0}$

Dispersion relations of incremental L waves:

$$s^{2}\left[1-\alpha\frac{\sin(\kappa\varpi)}{\kappa\varpi}\right]-2s\left[\cos(\kappa\varpi)-\alpha\frac{\sin(\kappa\varpi)}{\kappa\varpi}\right]+1-\alpha\frac{\sin(\kappa\varpi)}{\kappa\varpi}=0$$

Dispersion relations

 \succ In the long wave limit, the effective wave velocity:

$$V_{eff}^2 = (1 - \alpha) J \overline{\mathcal{A}}_0 c_T^2, \quad c_T^2 = \frac{\mu}{\rho_0} \quad \Longrightarrow \quad \alpha < 1$$

Outline

Introduction

- > Nonlinear axisymmetric deformations
- > Actuation of the DE cylinder with
 - periodic electrical boundary conditions
- Dispersion relations (incremental L waves)
- > Numerical results
- > Conclusions

Neo-Hookean model

> Effective material parameters:

$$\overline{C} = \lambda_3^2 / J, \quad \overline{B}_1 = \overline{B}_2 = -\lambda_3 \overline{D}_3 / \lambda_1, \quad \overline{B}_3 = \overline{D}_3,$$

$$\overline{A}_{11} = \overline{A}_{22} = 1 + (1 + J^2 \overline{\Lambda} + J \overline{D}_3^2) / \lambda_1^2, \quad \overline{A}_{12} = \overline{\Lambda} (2J - 1) \lambda_3 + \lambda_3 \overline{D}_3^2 / 2,$$

$$\overline{A}_{13} = \overline{A}_{23} = \overline{\Lambda} (2J - 1) \lambda_1 - \lambda_1 \overline{D}_3^2 / 2, \quad \overline{A}_{33} = 1 + (1 + J^2 \overline{\Lambda}) / \lambda_3^2$$

$$\blacktriangleright \text{ Geometrical parameters and physical properties of Fluorosilicone 730:}$$

$$\rho_0 = 1400 \text{kg/m}^3, \ \mu = 167.67 \text{kPa}, \ \Lambda = 100 \mu,$$

 $\varepsilon_0 = 8.85 \times 10^{-12} \text{ F/m}, \ \varepsilon_r = 7.11,$

 $E_{EB} = 372$ MV/m, L = 50 mm, $R_0 = 10$ mm

➤ Wave frequency :

$$\Omega^2 = \rho_0 \omega^2 L^2 / \mu, \quad f = \omega / (2\pi)$$

Shmuel and Pernas-Salomon (2016) Manipulating motions of elastomer films by electrostatically-controlled aperiodicity. *Smart Mater. Struct.* 25: 125012.

Neo-Hookean model

Nonlinear response (path A)

Dispersion curves (path A)

Dispersion curves (path A)

Bragg band gaps (path A)

The variations of the lowest Bragg band gap with the electric voltage for different values of pre-stretches.

Bragg band gaps (path A)

Table 1. Tunable range of the 1st Bragg band gap for different axial pre-stretches.

	Pre-stretch	Control range of normalized electric voltage (\overline{V})	1 st band gap central frequency (kHz)	Variation of 1 st band gap normalized z) central frequency		1 st band gap width (kHz)	Variation of 1 st band gap normalized frequency width	
	$\lambda_3 = 1$	0-1.00	0.189-0.109	1-0	1-0.576		0-1.153	
	$\lambda_3 = 1.5$	0-1.63	0.138-0.080	1-0	1-0.580		0-	1.152
	$\lambda_3 = 3$	0-5.31	-5.31 0.113-0.065		1-0.575		0-	1.150
eometry		Materials (matrix/inclusio	ons) of	Control rang Type or type of exter of control impedance		ge Variatio rnal band gap n central fr	n of 1st V ormalized equency fr	ariation of 1st band gap normalized equency width (%)
D PC D PC		Quartz/void Epoxy/electro-rheologi	I Ter cal material DC e	nperature lectric field	0–50 °C 0.5–3.5 kV m	1-0.	998 934	0.386–0.388 0.638–0.571
D PC D PC D PC		Elastomer/vo Epoxy/Terfenc PIN-PMN-PT/v	id ol D DC m void Extern	Stress agnetic field al impedance	92–95 kPa 0–20 kOe 0–+∞ nF	1-1. 1-1. 1-0.	044 337 988	0-0.0062 0-0.712 0.103-0.078

Beam with
piezoelectric patchesEpoxy/Lead Zirconate Titanate (PZT)External impedance0—108 nF1—1.7140.286—1.714Uniform rodPZTExternal impedance0—+ ∞ nF1—0.8330—0.333

> Degraeve et al. (2014) Bragg band gaps tunability in an homogenoeous piezoelectric rod with periodic electrical boundary conditions. J. Appl. Phys. 115: 194508.

Long wave limit (path A)

Comparison of the long wave limits with the exact dispersion relation for the incremental L waves at different axial pre-stretches and electric voltages.

Nonlinear response (path B)

Dispersion curves (path B)

Nonlinear response (path B)

electric voltage for different values of axial forces.

Bragg band gaps (path B)

Table 1. Tunable range of the 1st Bragg band gap for different axial force.

Pre-stretch	Control range of normalized electric voltage (\overline{V})	1 st band gap central frequency (kHz)	Variation of 1 st band gap normalized central frequency		1 st band gap width (kHz)	Variation of 1 st band gap normalized frequency width
$\overline{N} = 0$	0-0.69	0.189-0.177	1-0.936		0-0.354	0-1.873
$\overline{N} = 2.5$	0-2.45	0.115-0.074	1-0.646		0-0.135	0-1.174
$\overline{N} = 5$	0-8.23	0.110-0.065	1-0.589		0-0.126	0-1.146
Geometry	Materials (matrix/inclus)	s sions) of	Type control	Control rang or type of exte impedance	ge Variation rnal band gap no central fro	n of 1stVariation of 1st bandormalizedgap normalizedequencyfrequency width (%)
2D PC	Quartz/vo	id Ter	nperature	0–50°C	1-0.	998 0.386–0.388
2D PC	Epoxy/electro-rheolog	gical material DC e	lectric field	0.5–3.5 kV m	1 1-0.9	0.638–0.571
2D PC	Elastomer/v	oid	Stress 92		1-1.0	044 0-0.0062
2D PC	Epoxy/Terfer	nol D DC m	agnetic field	0–20 kOe	1-1.3	337 0–0.712
2D PC	PIN-PMN-PT	/void Externa	al impedance	$0-+\infty$ nF	1-0.9	988 0.103–0.078
Beam with				0 100 -		
piezoelectric patches Epoxy/Lead Zirconate Titanate (PZT) F			al impedance	0—108 nF	¥-1.7	/14 0.286–1.714
Uniform rod	PZT	Externa	al impedance	$0-+\infty$ nF	1–0.8	333 0–0.333

Degraeve et al. (2014) Bragg band gaps tunability in an homogenoeous piezoelectric rod with periodic electrical boundary conditions. J. Appl. Phys. 115: 194508.

Gent model and snap-through transition

(a) Nonlinear response of the radial stretch to the dimensionless electric voltage in the axially free DE phononic cylinder for the neo-Hookean and Gent models. The snap-through transitions associated with the Gent model only are denoted by the blue dashed arrows. (b) The frequency limits of the first Bragg BG versus the dimensionless electric voltage in the axially free DE phononic cylinder for the Gent model.

Outline

Introduction

- > Nonlinear axisymmetric deformations
- > Actuation of the DE cylinder with
 - periodic electrical boundary conditions
- Dispersion relations (incremental L waves)
- > Numerical results
- > Conclusions

Conclusions

- ✓ Analytical dispersion relations for longitudinal waves in are obtained within the Dorfmann-Ogden framework of electroelasticity for 1D soft DE phononic crystal cylinders.
- Nonlinear response of two loading paths, i.e. fixed axial pre-stretch (Path A) and fixed axial force (Path B), are considered. The frequency limits of band gaps and the long wave limits are derived analytically.
- ✓ The nonlinear response and Bragg band gap is confined by the critical voltage. The applied voltage can largely widen the band gaps while the pre-stretch or axial force mainly change the position. The effective wave velocity at low frequency and long wavelength can be tuned by the pre-stretch and the applied voltage.
- ✓ The increasing axial pre-stretch or axial force, while enhancing the stability of the 1D phononic crystal, weakens its working performance in terms of the tunable band gap width.

Thanks for your attention!

The work was sponsored by the National Natural Science Foundation of China (Nos. 11532001 and 11621062).

Welcome to Hangzhou!

Welcome to Hangzhou!

12th International Congress on Thermal Stresses June 1-5, 2019, Hangzhou, China

General Chair

Prof. Weiqiu Chen Department of Engineering Mechanics Zhejiang University, Hangzhou 310027, Zhejiang, China, phone: +86-571-87951866 Emails: chenwq@zju.edu.cn

Co-Chairs

Prof. Richard B Hetnarski Rochester Institute of Technology, USA Prof. Naotake Noda Shizuoka University, Japan

Secretariat of TS 2019

Prof. Jizhou Song Department of Engineering Mechanics Zhejiang University, Hangzhou, China Tel: +86-571-87952368 E-mail: jzsong@zju.edu.cn ts2019zju@gmail.com

Web: http://ts2019.zju.edu.cn

