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Band gaps

Periodic structures
(Maldovan, Nature, 2013)

Resonant units
(Liu & Sheng, Science, 2000)
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Tuning band gaps
 Rotating the scatters (Goffaux and Vigneron, 2001)
 Making use of the effect of multifield coupling (Hou et 

al., 2004; Robillard et al., 2009; Yeh, 2007)
 Mechanical means: Prestress (Huang et al., 2014)
 Mechanical means: Large deformation (Bertoldi et al., 

2008)
initial
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Some recent works

Tunable lattice phononics
Huang et al. AMSS (2018)

Tunable phononics with criss-
crossed elliptical holes

Gao et al. In preparation

=0

=0.15
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Some recent works

1D acoustic diode
Chen et al. JAM (2017)

Tuning thorough small 
deformation

Huang et al. Submitted.
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 Axisymmetric homogeneous 
deformations:

Axisymmetric deformations

(a) (b)
A soft DE cylinder with flexible electrodes:
(a) undeformed configuration; (b) activated configuration.
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Axisymmetric deformations
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 Ideal compressible dielectric elastomer (DE) model:

- - - initial shear modulus;   - - - first Lame's parameter;
- - - bulk modulus;   - - - permittivity of the elastomer;
- - - Gent constant reflecting the limiting chain extensibility.m

K
J






 Galich PI and Rudykh S (2016) Manipulating pressure and shear waves in dielectric
elastomers via external electric stimuli. Int. J. Solids Struct. 91: 18-25.

 Galich PI, Fang NX, Boyce MC and Rudykh S (2017) Elastic wave propagation in finitely
deformed layered materials. J. Mech. Phys. Solids 98: 390-410.
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Axisymmetric deformations
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 For neo-Hookean model:
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 For Gent model:
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Electric voltage applied to the electrodes:
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Axisymmetric deformations
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 For neo-Hookean model:
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 For Gent model:

Traction boundary condition on the cylindrical surface
and axial force condition:

11 22 33 2 2 2
0 1 0
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Loading paths

Geometry and actuation of the

Infinitely long waveguide:

(a) undeformed configuration,

(b) pre-stretched configuration, 

(c) path A configuration, 

(d) path B configuration.

(a) (b) (c) (d)
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Path A (fixed axial pre-stretch)

 2

11 22 33 10,    0,    / preV N      

 First: Stretch with axial force 
but without voltage

1 3,   in terms of  .pre pre N 

3 3 11 22,   0pre     

 Second: Keep the pre-stretch, 
and apply an electric voltage

1 3 3,   in terms of   and .preV  
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Path B (fixed axial force)

 2

11 22 33 10,    0,    / preV N      

 First: Stretch with axial force 
but without voltage

1 3,   in terms of  .pre pre N 

2
11 22 33 10,    /N     

 Second: Keep the axial force 
and apply an electric voltage

1 3,   in terms of   and  .V N 
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1D Incremental equations
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 Using the perturbation method, the linearized incremental 
constitutive equations in Lagrangian description:
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 1D incremental constitutive equations in Lagrangian description:
11 22 0S S  Stress relaxation condition:



Key Laboratory of Soft Machines and Smart Devices of Zhejiang  Province

1D Incremental equations
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 Utilizing push-forward operation, 1D incremental
constitutive equations in Eulerian description:
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 1D incremental governing equations:
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 1D equation of motion governing the time-harmonic 
incremental L waves:
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 Incremental displacement and stress:
Dispersion relations
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Bloch-Floquet relation at the interfaces:
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The voltage applied to the cell is kept invariant:
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Dispersion relations
Dispersion relations corresponding to pass band:
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The frequency limits of the band gaps at the border 
of Brillouin zone:

 
   

2 1 ,

tan / 2 / 2

m 

  

 



 In the long wave limit, the effective wave velocity:
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The frequency limits at the center of Brillouin zone:
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Stability Condition
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Neo-Hookean model
Effective material parameters:
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Geometrical parameters and physical properties 
of Fluorosilicone 730:

Wave frequency :
2 2 2

0 / ,    / (2 )L f      
 Shmuel and Pernas-Salomon (2016) Manipulating motions of elastomer films by

electrostatically-controlled aperiodicity. Smart Mater. Struct. 25: 125012.
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Normalized electrical
breakdown voltage

3 /EB EBV E   

Neo-Hookean model
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Path B making wave velocity of the lowest branch vanish. (        )1 
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Nonlinear response (path A)

Nonlinear response to
electric voltage at different
pre-stretches for path A
of neo-Hookean model.
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Dispersion curves (path A)

The first four dispersion curves at different voltages for          .3 1 
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Dispersion curves (path A)

The first four dispersion curves at different voltages for          .3 3 

With transverse
stress relaxation
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Bragg band gaps (path A)

The variations of the lowest Bragg band gap with the electric 
voltage for different values of pre-stretches.
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Bragg band gaps (path A)
Table 1. Tunable range of the 1st Bragg band gap for different axial pre-stretches.

 Degraeve et al. (2014) Bragg band gaps tunability in an homogenoeous piezoelectric rod
with periodic electrical boundary conditions. J. Appl. Phys. 115: 194508.

Pre-stretch
Control range of 

normalized electric 
voltage (V ) 

1st band  
gap central 

frequency (kHz)

Variation of 1st band 
gap normalized 

central frequency 

1st band 
gap width 

(kHz) 

Variation of 1st band 
gap normalized 
frequency width 

3 1   0-1.00 0.189-0.109 1-0.576 0-0.218 0-1.153 

3 1.5   0-1.63 0.138-0.080 1-0.580 0-0.159 0-1.152 

3 3   0-5.31 0.113-0.065 1-0.575 0-0.130 0-1.150 
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Long wave limit (path A)

Comparison of the long wave limits with the exact dispersion relation for the 
incremental L waves at different axial pre-stretches and electric voltages.
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Nonlinear response (path B)

Nonlinear response to electric voltage at different axial 
force for path B of neo-Hookean model.
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Dispersion curves (path B)

The first four dispersion curves at different voltages for          .=0N

With transverse
stress relaxation
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Nonlinear response (path B)

The variations of the lowest Bragg band gaps with the 
electric voltage for different values of axial forces.
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Bragg band gaps (path B)
Table 1. Tunable range of the 1st Bragg band gap for different axial force.

 Degraeve et al. (2014) Bragg band gaps tunability in an homogenoeous piezoelectric rod
with periodic electrical boundary conditions. J. Appl. Phys. 115: 194508.

Pre-stretch
Control range of 

normalized electric 
voltage (V ) 

1st band  
gap central 

frequency (kHz)

Variation of 1st band 
gap normalized 

central frequency 

1st band 
gap width 

(kHz) 

Variation of 1st band 
gap normalized 
frequency width 

0N   0-0.69 0.189-0.177 1-0.936 0-0.354 0-1.873 

2.5N  0-2.45 0.115-0.074 1-0.646 0-0.135 0-1.174 

5N   0-8.23 0.110-0.065 1-0.589 0-0.126 0-1.146 
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Gent model and snap-through transition

(a) Nonlinear response of the radial stretch to the dimensionless electric voltage in the 
axially free DE phononic cylinder for the neo-Hookean and Gent models. The snap-through 
transitions associated with the Gent model only are denoted by the blue dashed arrows. (b) 
The frequency limits of the first Bragg BG versus the dimensionless electric voltage in the 
axially free DE phononic cylinder for the Gent model.
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 Analytical dispersion relations for longitudinal waves in are obtained 
within the Dorfmann-Ogden framework of electroelasticity for 1D 
soft DE phononic crystal cylinders.

 Nonlinear response of two loading paths, i.e. fixed axial pre-stretch (Path 
A) and fixed axial force (Path B), are considered. The frequency limits 
of band gaps and the long wave limits are derived analytically.

 The nonlinear response and Bragg band gap is confined by the critical 
voltage. The applied voltage can largely widen the band gaps while the 
pre-stretch or axial force mainly change the position. The effective wave 
velocity at low frequency and long wavelength can be tuned by the pre-
stretch and the applied voltage.

 The increasing axial pre-stretch or axial force, while enhancing the 
stability of the 1D phononic crystal,  weakens its working 
performance in terms of the tunable band gap width.

Conclusions
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