## **About Omics Group**

OMICS Group International through its Open Access Initiative is committed to make genuine and reliable contributions to the scientific community. OMICS Group hosts over 400 leading-edge peer reviewed Open Access Journals and organize over 300 International Conferences annually all over the world. OMICS Publishing Group journals have over 3 million readers and the fame and success of the same can be attributed to the strong editorial board which contains over 30000 eminent personalities that ensure a rapid, quality and quick review process.



# About Omics Group conferences

- OMICS Group signed an agreement with more than 1000 International Societies to make healthcare information Open Access. OMICS Group Conferences make the perfect platform for global networking as it brings together renowned speakers and scientists across the globe to a most exciting and memorable scientific event filled with much enlightening interactive sessions, world class exhibitions and poster presentations
- Omics group has organised 500 conferences, workshops and national symposium across the major cities including SanFrancisco,Omaha,Orlado,Rayleigh,SantaClara,Chicag o,Philadelphia,Unitedkingdom,Baltimore,SanAntanio,Dubai ,Hyderabad,Bangaluru and Mumbai.



# Networks for Large Data Flows - Revolution or Evolutions?

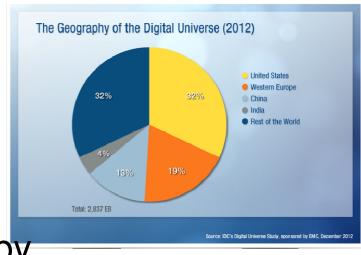
#### Weiqiang Sun and Weisheng Hu

Shanghai Jiao Tong University {sunwq, wshu}@sjtu.edu.cn sunwq@mit.edu



### **Outline**

- The Increasing Challenges of Big Data on the network infrastructure
- The Characteristics of Data Flows
- Existing Efforts in Delivering Big Data
- Our Proposal Integrated Data Flow Delivery with Built-in Mass Storage
- Some Results




## The Ever-increasing Demand

 In 2013, data generated everyday exceeds 1EB (10<sup>18</sup> bytes)

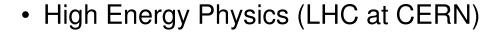
 In the coming 10 years, the data generated will increase by 50-folds

 The traffic between Data Centers will increase 34% every year








## Big Data From the Science Domain

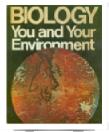
 The demand of moving large data set among research institutions has been immense





- Genomics
  - Data volume generated by HGP 10-folds every 12-18 Months
  - Still rely on courier mail of HDs or tapes (BGI) \*




- 10s 100s TB, distributed on a daily basis
- Connectomics
  - 1 mm<sup>3</sup> of brain image could produce 1PB (10<sup>15</sup> bytes)



**Physics** 



Meteorology



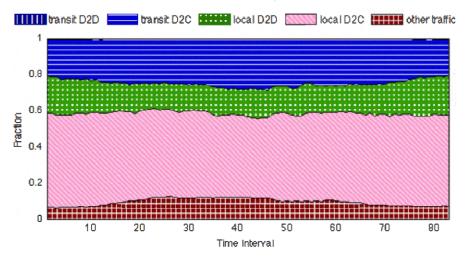
**Biology** 



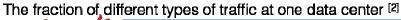
Environmental sciences



## Big Data From the End Users


- Huge Email attachments
  - Gmail allows attachments up to 10GB from Nov. 2012. Before that, it was 25MB
  - outlook.com and hotmail allows 300GB (in OneDrive)
  - Yahoo mail allows unlimited attachments, if file is attached via dropbox
- This makes distributing and sharing of huge files a lot more easier than before
- Cloud storage plays an important role

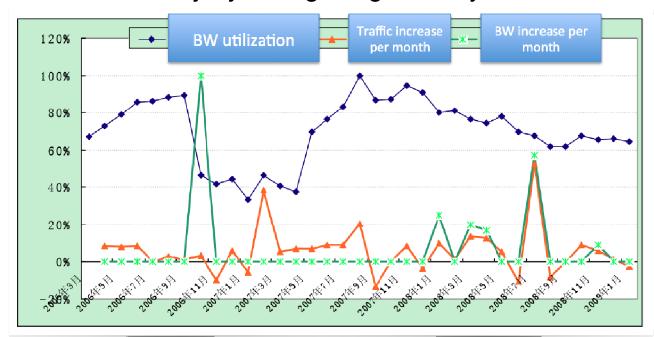





### Data Movement between DCs

- By 2015, the traffic betw. DCs will reach 1 ZB (10<sup>21</sup> bytes)
- The cost of network infrastructure is dominated by the Inter-DC Net.
   [1]
  - Peering where traffic are handled to ISP and then to users
  - The inter-DC links
  - Backhaul, metro-connectivity and others to reach the WAN sites

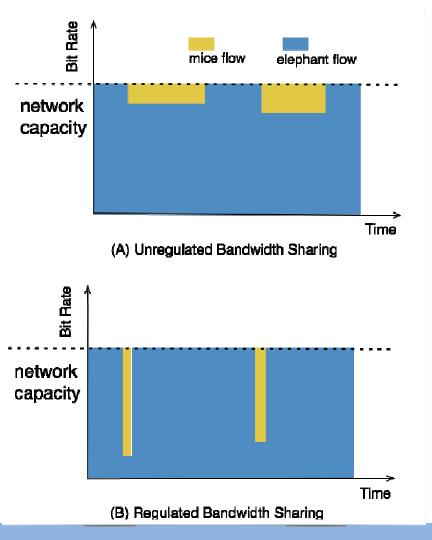



- A. Greenberg et al. "The cost of a cloud: research problems in data center networks." ACM SIGCOMM Computer Communication Review 39.1 (2008): 68-73.
- Y. Chen, S. Jain, V. K. Adhikari, Z.-L. Zhang, and K. Xu. A First Look at Inter-Data Center Traffic Characteristics via Yahoo! Datasets. In IEEE INFOCOM'11.





### What Are the Problems?


- Bandwidth increase can barely keep up with the pace of demand increase
- Bandwidth increased by 6-fold, but revenue and number of customers increase only by a single digit each year





#### What Are the Problems? - cont.

- Elephant flows compete bandwidth with interactive but small flows
- Degrading the QoE of mice flows without bringing significant benefit to elephant flows
- Make resource sharing among large/small flow very difficult



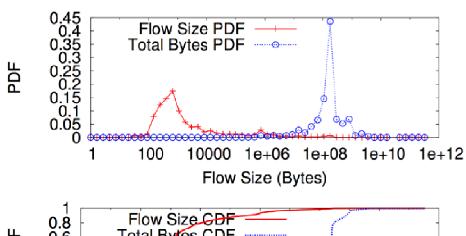


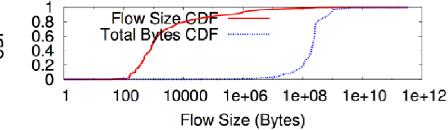
### **Outline**

- The Increasing Challenges of Big Data on the network infrastructure
- The Characteristics of Data Flows
- Existing Efforts in Delivering Big Data
- Our Proposal Integrated Data Flow Delivery with Built-in Mass Storage
- Some Results



## Characteristics of Big Data Flows (From a transport network point of view)


Bulky


Delay Tolerant



## Data Flows are Bulky

- The total traffic is dominated by bulk flows that is:
  - Very few in number: <1%</p>
  - Big in size: between 100 1000MB
  - and most 100MB flows comes from larger flows
- Bulk flows occupy more than 90% of total bandwidth







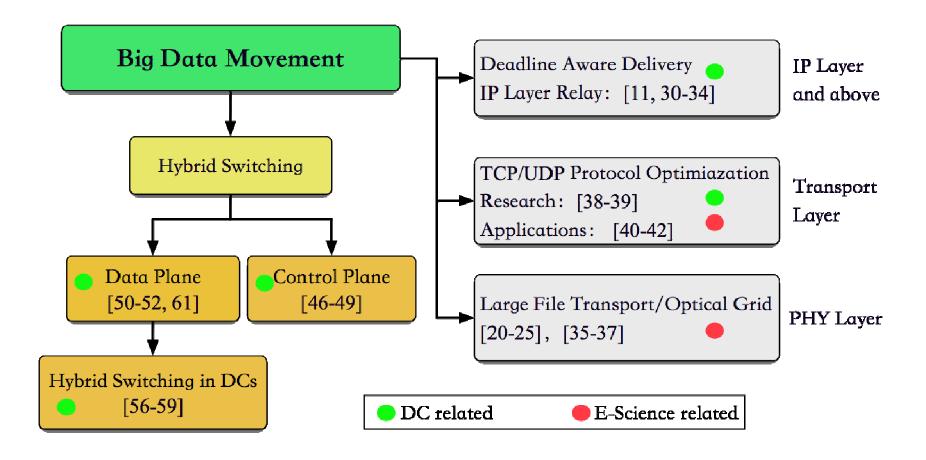
<sup>\*</sup> A. Greenberg et al. "VL2: a scalable and flexible data center network." ACM SIGCOMM Computer Communication Review. Vol. 39. No. 4. ACM, 2009.

## Data Flows are Delay Tolerant

- Data flows in E-Science is often delay tolerant
  - Genomic data
  - HEP data
- Data flows between DCs are dominated by background traffic \*
  - Backups
  - Content distributions and so on



\* Y. Chen, S. Jain, V. K. Adhikari, Z.-L. Zhang, and K. Xu. A First Look at Inter-Data Center Traffic Characteristics via Yahoo! Datasets. In IEEE INFOCOM'11.




### **Outline**

- The Increasing Challenges of Big Data on the network infrastructure
- The Characteristics of Data Flows
- Existing Efforts in Delivering Big Data
- Our Proposal Integrated Data Flow Delivery with Built-in Mass Storage
- Some Results



### **Big Data Movement - Existing Work**





## Moving bulk data with dedicated Optical Networks

- Can be dated back to early 2000s
- Use circuit switched optical networks
- A lot of interesting research and testbeds

|                  | Networking Technology                                                                                       | <b>Provisioning Method</b>                              | <b>Provisioned Channel capacity</b>                                 | Applications                                        |
|------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------|
| USN              | SONET/10 Gigabit Ethernet<br>(core) and Multi-Service<br>Provisioning Platform (edge)                       | Centralized scheduling<br>and signaling within a<br>VPN | 10Gbps, 1Gbps and high-<br>precision channels such as<br>SONET OC-1 | Large data<br>transfer                              |
| CHEETAH          | SONET (core) and Multi-<br>Service Provisioning Platform<br>(edge) with packet switching<br>for dual homing | GMPLS with hardware-<br>accelerated signaling           | 10Gbps and 1Gbps                                                    | Large file transfer<br>and remote<br>visualizations |
| UCLP/<br>CA*net4 | Lightpath Switching                                                                                         | Centralized<br>provisioning through<br>Web Service      | Wavelength (10Gbps) and sub-wavelength                              | High<br>performance<br>computing                    |
| DRAGON           | DWDM switching (core) and<br>Ethernet, TDM, IP (edge)                                                       | GMPLS with centralized broker                           | Wavelength, Ethernet and IP                                         | e-VLBI                                              |
| SURFnet6         | Lambda switching and packet switching                                                                       | User controlled provisioning                            | Wavelength                                                          | Large data<br>transfer                              |
| OptiPuter        | Lambda Switching with packet switching for dual homing                                                      | Client-provisioning<br>through Web Service              | Wavelength                                                          | Distributed<br>Virtual Computer<br>(DVC)            |
| OMNInet          | DWDM switching and L2/L3 devices                                                                            | GMPLS with OIF UNI                                      | 10/100/1000Mbps                                                     | Grid applications                                   |
| 3TNet            | SONET (core) and Multi-<br>Service Provisioning Platform<br>(edge)                                          | GMPLS with OIF UNI                                      | 1000Mbps                                                            | Large data<br>transfer                              |

Resulted in good experience in building dedicated and small scale networks. But not intended for large scale deployment because of scalability issues.

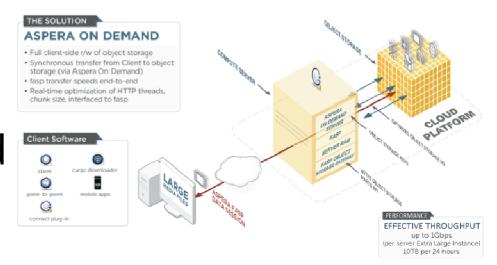


## **Transport Protocol Optimizations**

 Over High speed long High Speed Long Distance Networks distances networks **Enhanced TCP**  Within Data Centers **Error Notification**  Over the public Internet RBUDP, Tsunami RTsunami, UDT Over dedicated high **UDP Lite. SABUL** HTCP, FAST, PERT ETEN. NAK GTP, FOBS, FRTP XCP, VCP, JetMax SACK, SNACK LambdaStream **EVLF-TCP, CLTCP** speed networks

Necessary and important enhancements to existing protocols, but will not be able to address the scalability issues (capacity, power consumption and management).




#### Moving Bulk Data with the public Internet

- By optimizing the transport layer and application layer protocols
- By utilizing unused bandwidth









Make the best use of the current infrastructure and not considered to be a long term solution.

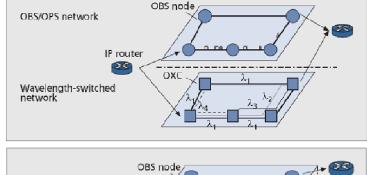


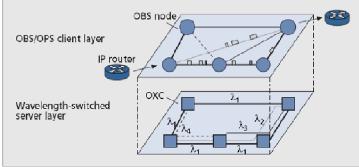
## **Hybrid Switching**

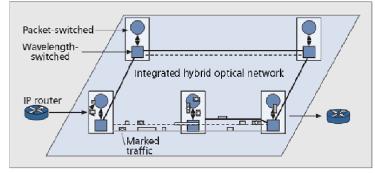
Optical super-channels

Core P-OTN
Digital Bandwidtl

OTN


ODUk/ODuFlex


Infinera, ECOC 2013

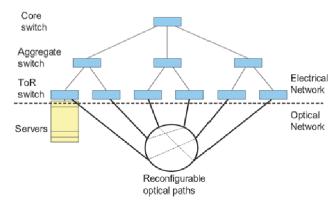

- Try to leverage the advantages of both
  - Fine granular packet switching

 Coarse granular, large capacity optical circuit switching

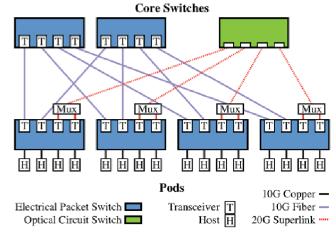
- Different modes
  - Parallel Mode
  - Client/Server Mode
  - Integrated Mode








C. M. Gauger et al., COMMAG, 2006

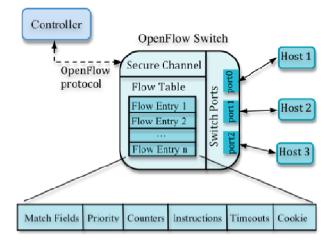


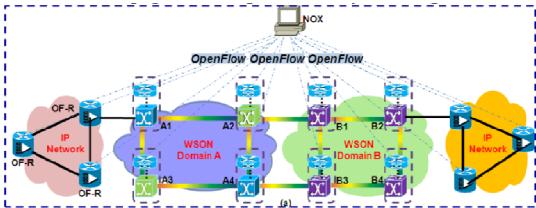

## **Hybrid Switching in DCNs**

- The packet-switched portion
  - all-to-all bandwidth for the bursty traffic
- The circuit-switched portion
  - baseline, slowly changing traffic
- Significant benefits
  - Up to a factor of 3 reduction in cost
  - A factor of 6 reduction in complexity
  - And a factor of 9 reduction in power consumption



G. Wang et al., SIGCOMM 2010



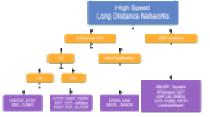


N. Farrington, et al., SIGCOMM 2010



## SDN - the Control Plane-ng?

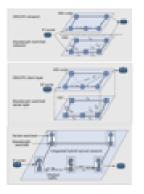
- A centralized way of controlling the network elements
- Separation of Data Plane and Control Plane
- Flow based management and control



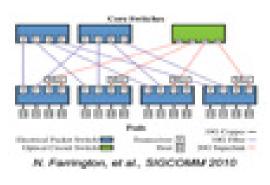




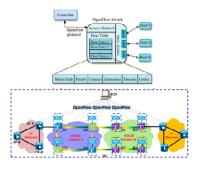

# Big Data Movement - the Evolutions!




High Speed Transmission for E-Science




High Speed
Transmission
in LDN


Early 2000~



**Hybrid Switching** 



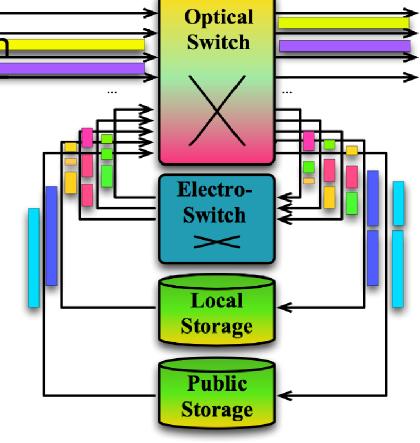
**Hybrid Switching in DCN** 



Converging with Flow Switching



### **Outline**


- The Increasing Challenges of Big Data on the network infrastructure
- The Characteristics of Data Flows
- Existing Efforts in Delivering Big Data
- Our Proposal Integrated Data Flow Delivery with Built-in Mass Storage
- Some Results

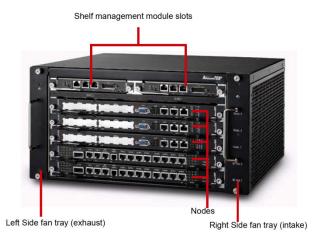


## SSS- Integrated Data Flow Delivery with Built-in Mass Storage

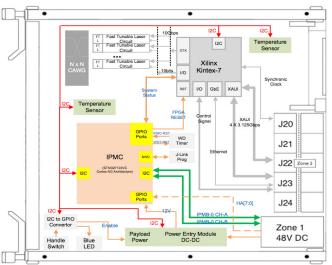
 High capacity optical switch for big data transfer and VT provisioning

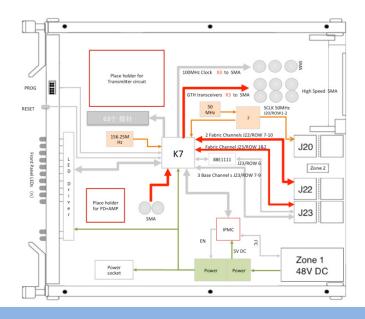
- Low capacity Electronic Switch for fine granular packet switching
- In-network mess storage (for big data)






## SSS - Integrated Data Flow Delivery with Built-in Mass Storage




## **Prototype Implementation**



- Built on an ATCA chassis
  - AWGR+TWC for Optical Switching
  - E-Switching
  - Local Storage
- Network controller with OpenFlow

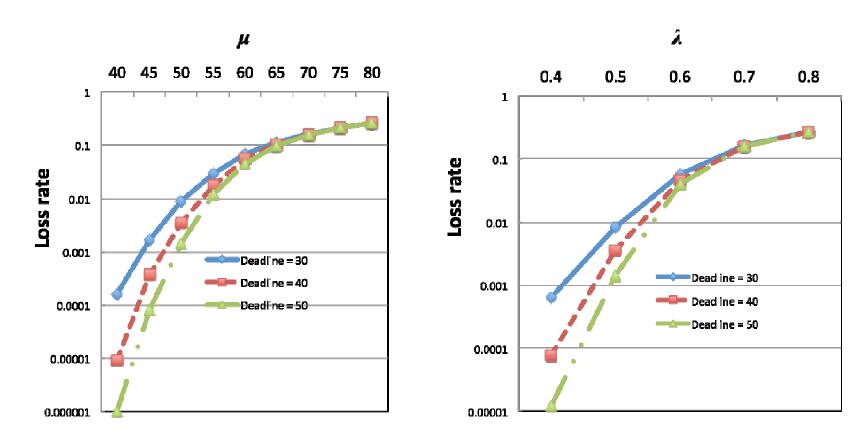






### **Outline**

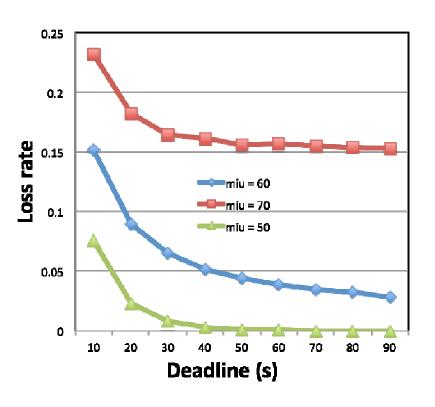
- The Increasing Challenges of Big Data on the network infrastructure
- The Characteristics of Data Flows
- Existing Efforts in Delivering Big Data
- Our Proposal Integrated Data Flow Delivery with Built-in Mass Storage
- Some Results

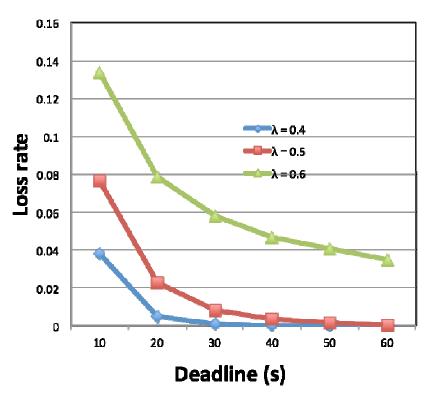



#### Some Results

- Single queue with traffic aggregation
- Requests/clients has a deadline
- Use Earliest Deadline First (EDF) policy



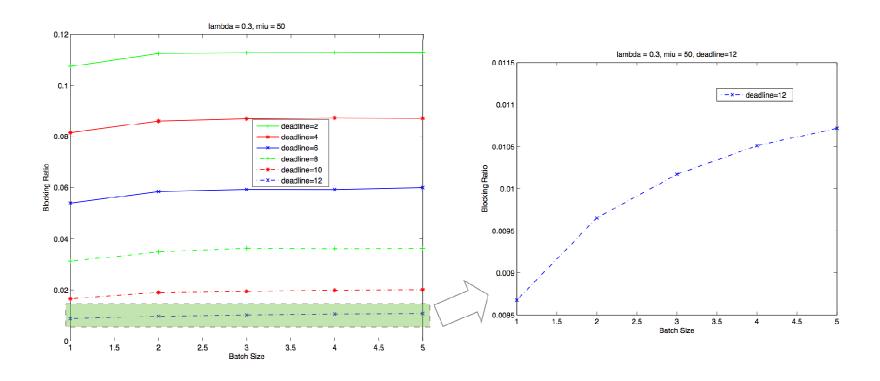

### Loss Rate vs. Load




C = 30, # request in a batch = 2

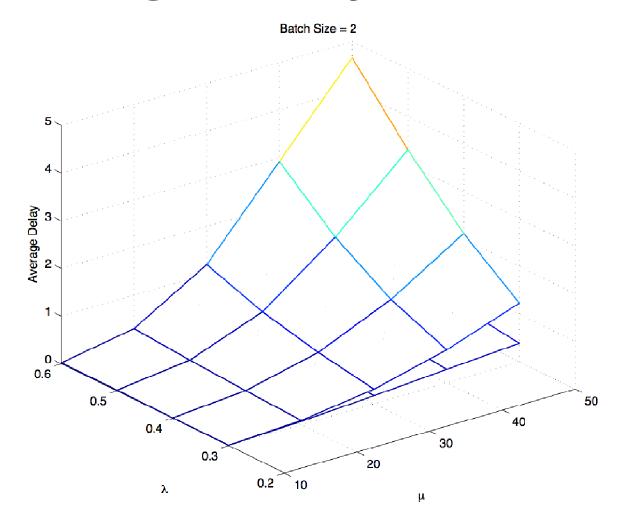


### Loss Rate vs. Deadline






Link capacity = 30




### Loss Rate vs. Batch Size





## Average Delay vs. Load





#### Conclusions

- Data increasing at an unprecedented pace
- Data flows are bulky and delay tolerant
- Innovations converge at the cloud age with flow switching and the SDN concept
- We propose to use hybrid switching with built-in storage to support big data delivery



## Thank you!

Weiqiang Sun and Weisheng Hu

Shanghai Jiao Tong University {sunwq, wshu}@sjtu.edu.cn



## The Big Data Initiative by NSFC

- Date: 2015.1 2019.12
- Coverage: Storage, Computing,
   Processing, Transporting of Big Data
- Number of Projects: 12
- Support Level: 3.0 ~ 3.5 M RMB/project

More to come in 2015...



## Let Us Meet Again

We welcome all to our future group conferences of Omics group international

Please visit:

www.omicsgroup.com

www.Conferenceseries.com

http://optics.conferenceseries.com/

