A Regression Approach to Image Denoising Biometrics-Biostatistics 2015 San Antonio, TX

Walid Sharabati

Purdue University

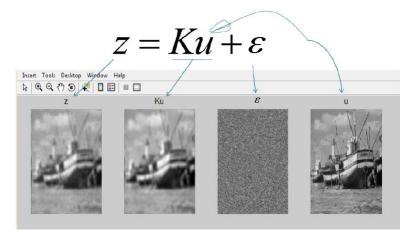
November 17, 2015

Outline for section 1

Background

2 Image Analysis

- Applications
- Test Images
- Denoising


B Results

- Gaussian Noise
- Salt and Pepper Noise
- Poisson Noise
- Factor Effects Noise Type, Noise Level and Radius

Questions

Image Denoising and Deblurring

The process of processing images to have a better representation of the scene. Make pictures sharp.

The Mathematical Model

$$z = Ku + \epsilon,$$

where z is the data, K is the smoothing operator, u is the true image, and ϵ is the noise.

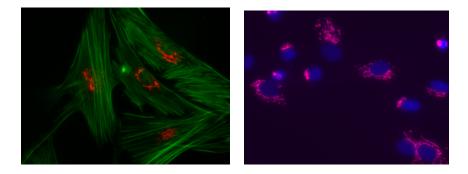
$$(Ku)(x) = \int_D k(x, y) \cdot u(y) \, dy, \quad x \in D.$$

Outline for section 2

Background

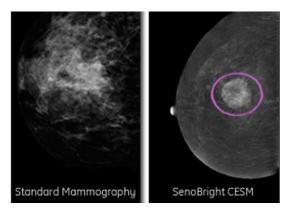
2 Image Analysis

- Applications
- Test Images
- Denoising

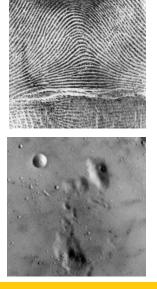

B Results

- Gaussian Noise
- Salt and Pepper Noise
- Poisson Noise
- Factor Effects Noise Type, Noise Level and Radius

Questions


Applications

Golgi Quantization


Copyright: Claudio Aguilar and Swetha Ramadesikan.

Breast Cancer

Test Images

Denoising

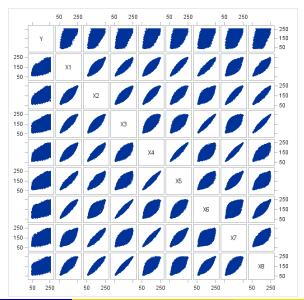
Consider a sharp image U that undergoes a two-dimensional Gaussian white noise η , which is added to the original image to produce a noisy image Z.

$$Z = I \cdot U + \eta,$$

The noisy image translates into a regression problem as follows

$$Y = X \cdot \beta + \epsilon$$

We want to estimate the parameters β_i and the predicted pixel values \hat{Y} .


$$\hat{\beta} = \left(X' \cdot X\right)^{-1} \cdot X' \cdot Y.$$

The predicted values are

$$\hat{Y} = X \cdot \left(X' \cdot X\right)^{-1} \cdot X' \cdot Y.$$

Denoising

Scatterplot Matrix

Types of Noise

- Gaussian Noise, also known as white noise.
- Poisson Noise.
- Gaussian plus Poisson noise.
- Salt & Pepper Noise.
- Speckle Noise.
- Stripped Noise.

Model Assessment

• **Peak signal-to-noise ratio (PSNR)** measure to assess the performance of the proposed model.

$$\mathrm{SNR} = \frac{\hat{\mu}_{\mathsf{signal}}}{\hat{\sigma}_{\mathsf{noise}}},$$

where $\hat{\mu}$ and $\hat{\sigma}$ are the estimated expected value of the signal and standard deviation of the noise, respectively.

• Structural similarity (SSIM) index is a measure used in image analysis to assess the quality between two images, sort of a correlation coefficient.

$$\mathsf{SSIM}(X,Z) = \frac{(2\mu_X\mu_Z + c_1)(2\sigma_{XZ} + c_2)}{(\mu_X^2 + \mu_Z^2 + c_1)(\sigma_X^2 + \sigma_Z^2 + c_2)},$$

where μ_X, μ_Z the mean of images X and Z, respectively; σ_X^2, σ_Z^2 the variance of images X and Z, respectively; and σ_{XZ} the covariance between images X and Z. $c_1 = 0.01 \cdot L$ and $c_2 = 0.03 \cdot L$ are constants with $L = 2^{(\text{number of bits per pixel})} - 1$. L = 255.

Outline for section 3

Background

2 Image Analysis

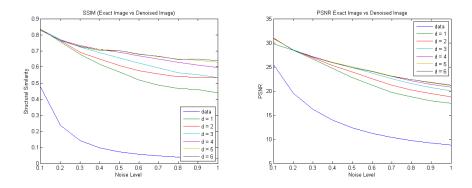
- Applications
- Test Images
- Denoising

B Results

- Gaussian Noise
- Salt and Pepper Noise
- Poisson Noise
- Factor Effects Noise Type, Noise Level and Radius

Questions

Gaussian Noise


Figure : From left to right: Exact, noisy and denoised images for a 30% noisy image using radius of 6. The structural similarity changes from 0.14 to 0.73, while PSNR changes from 16.17 to 27.01. The added noise is Gaussian.

- The improvement in the denoising rate is 0.59 increase in the similarity measure and 10.84 increase in the PSNR measure.
- Adjusted R^2 value is 0.6235.
- 10% of the pixels were insignificant in predicting the noisy pixel.
- All estimated slopes or weights add up to approximately 1.

Results

Gaussian Noise

Factors: Radius and Noise Level

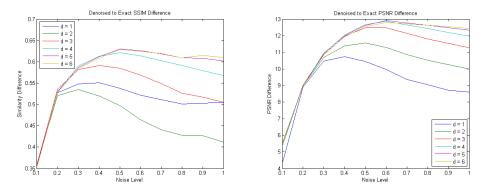


Figure : Additive Gaussian noise; structural similarity and PSNR versus noise level between the exact and denoised images for different radii. The blue curves reference the exact image and noisy image.

Results

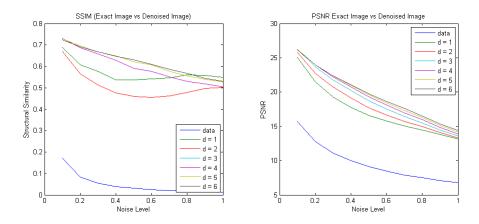
Gaussian Noise

Factors: Radius and Noise Level

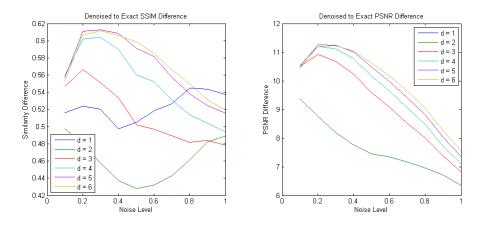
Figure : Additive Gaussian noise; structural similarity difference = SSIM(exact, denoised) - SSIM(exact, noisy) and PSNR difference = PSNR(exact, denoised) - PSNR(exact, noisy) versus noise level for different radii.

Salt & Pepper Noise

Figure : Exact, noisy and denoised images for a 30% noisy image using radius of 6; i.e. 168 pixels. The structural similarity changes from 0.06 to 0.67, while PSNR changes from 11.12 to 22.34. The added noise is salt & pepper.


- The improvement in the denoising rate is 0.61 increase in the similarity measure and 11.22 increase in the PSNR measure.
- Adjusted R^2 value is 0.2316.
- 18.5% of the 168 pixels were statistically insignificant.
- Salt & pepper perturbation is 0 or 255. The mean is greatly impacted

Salt & Pepper Noise


Figure : From left to right: Exact, noisy and denoised images for a 30% noisy image using radius of 6; i.e. 168 pixels. The structural similarity changes from 0.14 to 0.73, while PSNR changes from 16.17 to 27.01. The added noise is salt & pepper.

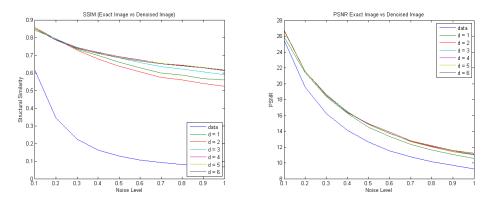
Factors: Radius and Noise Level

Figure : Additive salt & pepper noise; structural similarity and PSNR versus noise level between the exact and denoised images for different radii. The blue curves reference the exact image and noisy image.

Factors: Radius and Noise Level

Figure : Additive salt & pepper noise; structural similarity difference = SSIM(exact, denoised) - SSIM(exact, noisy) and PSNR difference = PSNR(exact, denoised) - PSNR(exact, noisy) versus noise level for different radii.

Poisson Noise


Figure : From left to right: Exact, noisy and denoised images for a 30% noisy image using 168 pixels. The structural similarity changes from 0.23 to 0.74, while PSNR changes from 16.24 to 18.48. The added noise is Poisson.

- Poisson noise is skewed, which affects both the mean and variance.
- Adjusted R^2 value is 0.7808.
- 9.5% of the 168 pixels were found to be statistically insignificant in predicting the noisy pixel.
- The weights add up to 0.9895.

Results

Poisson Noise

Factors: Radius and Noise Level

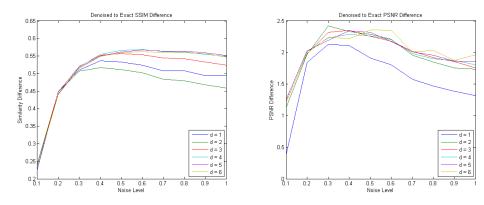


Figure : Additive Poisson noise; structural similarity and PSNR versus noise level between the exact and denoised images for different radii. The blue curves reference the exact image and noisy image.

Results

Poisson Noise

Factors: Radius and Noise Level

Figure : Additive Poisson noise; structural similarity difference = SSIM(exact, denoised) - SSIM(exact, noisy) and PSNR difference = PSNR(exact, denoised) - PSNR(exact, noisy) versus noise level for different radii.

Factor Effects Noise Type, Noise Level and Radius

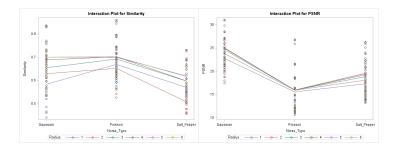


Figure : SSIM and PSNR means plots for noise type categorized by radius value.

- Two-way ANOVA for SSIM reveals that both noise type and radius are statistically significant factors. R^2 for this model is 0.3252.
- Two-way ANOVA for PSNR reveals that only noise type is a statistically significant factor. R^2 for this model is 0.4402.

Factor Effects Noise Type, Noise Level and Radius

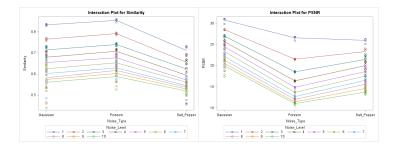


Figure : SSIM and PSNR means plots for noise type categorized by noise level.

- Two-way ANOVA for the SSIM shows that both noise type and noise level are statistically significant. R^2 for this model is 0.817.
- Two-way ANOVA for PSNR shows that both factors and their interaction are statistically significant. R² for this model is 0.9799.

```
November 17, 2015 25 / 32
```

Factor Effects Noise Type, Noise Level and Radius

Results

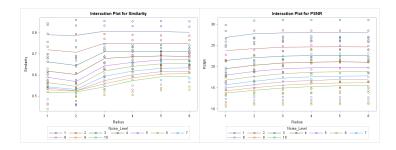
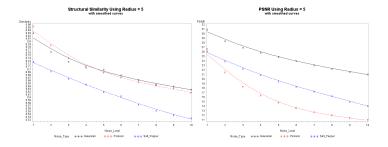



Figure : SSIM and PSNR means plots for radius categorized by noise level.

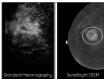
- Two-way ANOVA for SSIM reveals that both noise level and radius are statistically significant factors. R^2 for this model is 0.7238.
- Two-way ANOVA for PSNR reveals that only noise level is statistically significant. R^2 for this model is 0.5518.

Factor: Noise Type

Figure : SSIM and PSNR versus noise level categorized by noise type for d = 5.

- SSIM plot shows that Gaussian and Poisson noise are almost identical, but higher than salt & pepper noise.
- PSNR plot shows that Gaussian noise has higher PSNR overall compared to salt & pepper and Poisson.

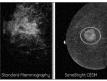
Gaussian Noise (Revisited)


True Image

True Image

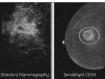
True Image

Sharabati (Purdue University)


Noisy Image (30% Noise, SSIM = 0.14, PSNR = 16.17)

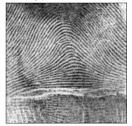
Noisy Image (30% Noise, SSIM = 0.45, PSNR = 15.48)

Noisy Image (30% Noise, SSIM = 0.29, PSNR = 23.67)

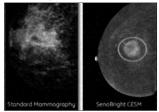

Denoised Image (radius = 6, SSIM = 0.73, PSNR = 27.01)

Denoised Image (radius = 6, SSIM = 0.82, PSNR = 24.04)

Denoised Image (radius = 6, SSIM = 0.63, PSNR = 30.00)



Median Filtering


Denoised Image (radius = 6, SSIM = 0.56, PSNR = 25.49)

Denoised Image (radius = 6, SSIM = 0.73, PSNR = 22.00)

Denoised Image (radius = 6, SSIM = 0.77, PSNR = 25.50)

Outline for section 4

Background

2 Image Analysis

- Applications
- Test Images
- Denoising

B Results

- Gaussian Noise
- Salt and Pepper Noise
- Poisson Noise
- Factor Effects Noise Type, Noise Level and Radius

Questions

Thank You!