

GENE EXPRESSION CHANGES TRIGGERED BY AMYLOID BETA TOXICITY

WAIL M. HASSAN

UNIVERSITY OF WISCONSIN - MILWAUKEE

OVERVIEW

- Model organism
- Gene expression alterations induced by Aβ
- Aβ-specific gene alterations
- Membrane damage
- Proteasome modulators

WHY STUDY GLOBAL GENE EXPRESSION IN NEMATODES?

- Ease of genetic manipulations
- Short lifespan
- Common pathways and orthologues
- Inducible expression system

TEMPERATURE-INDUCIBLE Aβ EXPRESSION

- SMG-1 is an mRNA surveillance protein.
- Temperature inducibility is enabled by a smg-1ts mutation.

HUMAN Aβ IS TOXIC IN WORMS

• Aβ₁₋₄₂ expression in body-wall muscle causes irreversible paralysis phenotype

MICROARRAY STUDIES

Strains:

- $A\beta_{1-42}$ -expressing animals (CL4176)
- GFP::degron-expressing animals (CL2337)
- Soluble GFP-expressing animals (CL2179)

MICROARRAY STUDIES

Experimental Design:

- Synchronous animals were grown at 16 °C for 36 hours.
- Transgenes were induced at 25 °C
- Worms were harvested at T0, T4, T8, T12, T16, and T20

DIFFERENTIALLY EXPRESSED GENES IN Aβ ANIMALS

DIFFERENTIALLY EXPRESSED GENES IN Aβ ANIMALS

Differential gene expression in $A\beta$ and GFP_{deg} animals

Time point	All Aβ	Aβ-specific	General misfolded protein response
Entire time course	1315 (1407)	957 (1009)	364 (398)
Up at T8	108 (117)	47 (50)	61 (67)
Down at T8	43 (46)	35 (38)	8 (8)
Up at T16	221 (233)	78 (81)	144 (152)
Down at T16	51 (54)	25 (27)	26 (27)
Up T8-T16	30 (32)	18 (18)	12 (14)
Down T8-T16	12 (12)	11 (11)	1 (1)

FUNCTIONAL ANALYSIS OF DIFFERENTIALLY EXPRESSED GENES

- Aβ-specific genes:
- Aging
- Insulin signaling
- Mitochondrial unfolded protein response
- Proteasome degradation pathways
- Membrane damage response

FUNCTIONAL ANALYSIS OF DIFFERENTIALLY EXPRESSED GENES

- Common genes:
- Stress response genes
- Immune response

Aβ TOXICITY AND MEMBRANE DAMAGE

- Previous studies suggested Aβ may form membrane pores
- Overlap between Aβ and Cry5B genes
- Questions:
 - Intestinal expression of Aβ?
 - KGB-1 and Aβ toxicity?

INDUCTION OF MEMBRANE DAMAGE RESPONSE

kgb-1 RNAi knock down in Aβ animals

kgb-1 RNAi knock down in GFP_{deg} animals

 $GFP_{deg}(CL2337)$

	n1	n2	n3	P value
<i>kgb-1</i> RNAi Control RNAi	46	59	67	0.8067
Control RNAi	62	58	102	0.0307

kgb-1 RNAi knock down in isogenic control animals

Control strain (CL802)

Aβ₁₋₄₂ INDUCES aip-1 EXPRESSION

aip-1 expression by Microarrays

aip-1 expression by RT-PCR

TRANSCRIPTIONAL REPORTER: aip-1/GFP

KNOCKING DOWN OF aip-1 ENHANCES Aβ TOXICITY

 $myo-3/A\beta_{1-42}$

aip-1 OVER-EXPRESSION DELAYS ALLEVIATES Aβ TOXICITY

AIP-1 DECREASES ACCUMULATION OF Aβ

A HUMAN HOMOLOGUE IS PROTECTIVE IN WORMS

SUMMARY

- Aβ-specific genes include ones involved in aging, insulin signaling, mitochondrial unfolded protein response, membrane damage repair, and proteasome function.
- \bullet A β toxicity appears to be mediated, at least in part, by membrane damage.
- AIRAPL, but not AIRAP, is protective against Aβ toxicity.

ACKNOWLEDGEMENT

- Christopher D. Link, Ph.D. University of Colorado Boulder
- Hassan lab members:
 - Craig Laufenberg
 - Aaron Taylor
 - Brandon Schmidt
- NIH and UWM CHS