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The idea of combination therapy of multidrug
resistant (MDR) tumors is based on using siRNA
down-regulating proteins involved in tumor
defense mechanisms (Pgp, survivin, Bcl2) together
with traditional chemotherapeutics.

Problems: - stabilization and delivery siRNA in vivo;
- synchronization of drug and siRNA;

- co-loading of a drug and siRNA on the
same nanocarrier



Challenges with siRNA delivery

Even after almost 15 years since RNAi was described by Fire and
Mello, there are no FDA approved, siRNA-based therapies, for the
treatment of cancer. Eight siRNA-based formulations, for cancer
therapy, are currently in the different phases of clinical trials*

Problems** RNase III
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v'Rapid degradation by serum nucleases

v'Poor cellular uptake due to inherent anionic
charge

* Davidson, B. L., & McCray, P. B. (2011). Current prospects for RNA interference-based therapies. Nature Reviews Genetics,
12(5), 329-340.
** Adapted from Navarro, G., S. Essex et al. Drug Delivery and translational medicine (2011)



New system for effective stabilization and delivery of SiRNA:
Reversible siRNA-phospholipid conjugate in PEG-PE
polymeric mixed micelles
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Left panel: Schematic structure of siRNA-PE/PEG-PE mixed micelles.
Right panel: stability of siRNA against nucleolysis in 1:750 mixed micelles
compared to that of the free siRNA at different time-points till 24 h




Gene silencing of different Cell viability on GFP-C166 after
formulations containing a 84 nM a 48 h incubation of different siRNA
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Left panel: % of gene silencing induced in GFP-C166 cells (comparison between naked
SiRNA and siRNA-PE in 1:750 mixed micelles formulation).

Right panel: cell viability in the presence of various siRNA-PE-containing PEG-PE-based
formulations in comparison with same amount of siRNA used as the Lipofectamine
formulation.




Polyethylenimine (PEl)-based siRNA micelle-
like nanocarriers

NH,
Pros*
» Proton sponge effect due to cationic nature J'H\/\ /\/M}\
» Synthetic flexibility (Linear/branched) N n

» Cationic charge condenses siRNA and facilitates cell uptake
» Low molecular weight PEI (1.8 kDa) is non-toxic

Cons*
» Toxicity (High molecular weight > 25kDa)

» Non-specific interaction with serum proteins
» RES mediated removal



Self-assembly PEI-lipid nanoparticles
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Micelle-like Nanoparticle (MNP)

** Driven by electrostatic
interaction (DNA/siRNA
complexation) followed by
hydrophobic interaction
(formation of lipid monolayer
coat)

*» Simple and quantitative
DNA/siRNA loading procedure

*» High DNA/siRNA loading
capacity (30 wt%)

**» Combine polyplexes with
sterically-stabilized micelles



Gene silencing efficacy of the PEI-lipid/siRNA(GFP)
complexes in cells that stably express GFP
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GFP flourescence was measured by cytometry. The absence of GFP suppression was observed
for non-modified PEI complexes, while a 75 % GFP signal reduction was seen for PEI-PE

complexes.



Endosomal escape of DOPE-PEI

v' Positive chloroquine
lysomotropic dependency
seen in case of DPPE-PEI
not in the case of DOPE-
PEI

v' Bafilomycin abolished the
GFP downregulation
ability of DOPE-PEI and
not DPPE-PEI

v' The greater efficacy of
DOPE-PEI in the gene
downregulation is due to
its ability for endosomal
escape
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Navarro, Essex et al. , Nanomedicine, (USA) 2013




P-glycoprotein (P-gp) downregulation by
DOPE-PEI-based nanocarriers

v' The in wvitro tumor
model chosen was
the drug resistant,
human breast cancer

MCF7/ ADR cells
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ADDING STIMULI SENSITIVITY



A schematic structure of the nanosystem to target siRNA
and drugs to hypoxic areas in tumors
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In vivo silencing activity
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A - Ex vivo fluorescence optical imaging of tumors 48h after injection of PBS, PEG-
Az-PEI-PE/anti-GFP siRNA complexes (PAPD/siGFP, n=4), PEG-Az-PEI-DOPE/negative
SiRNA complexes

B - Cell-associated fluorescence of dissociated tumors by flow cytometry
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Matrix Metalloprotease 2-Responsive
Multifunctional Liposomal Nanocarrier
for Enhanced Tumor Targeting
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Enhanced anticancer activity of nanopreparation
containing an MMP2-sensitive PEG-drug
conjugate and cell-penetrating moiety
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In response to the challenges of cancer chemotherapeutics, including ~ walter solubility, off-target toxicity, and acquired dr
poor physicochemical properties, low tumor targeting, insufficient ~Among many attempts to deal with these issues
tumor cell internalization/bioavailability, and side effects, we devel-  polymeric micelles have led to successes in deliver
oped a unique tumor-targeted micellar drug-delivery platform. Using ~ However, the low drug loading (10), risk of prematur
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drugs
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MMP2-responsive
multifunctional nanocarrier
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Nanopreparation Containing MMP2-sensitive PEG-paclitaxel
Conjugate and Cell Penetrating Moiety

W
TATp aaiﬂ\lgt PEG1000
PEG2000 paclitaxel $

4
\y (PTX) S TR |4 7 Tumortargeting via
AN == ‘ N ...  the EPR effect

NWT.T /'\_ T Micelle A

assembly o = formation

MMP2-mediated

. PEG2000
MMP2-0|?3V3b|e Loose “core-shell” szl . deshielding
peptide structure nanopreparation
~Y
/,;’;NN"
Tumor cell TATp-mediated cell
membrane

internalization

PEG1000-PE: a building block for nanocarrier

TATp-PEG1000-PE: a cell-penetrating moiety

PEG2000-peptide-PTX: (1) an MMP2-cleavable prodrug
(2) a self-assembly building block

PE, phosphatidylethanolamine

Zhu L, et al. (2013), PNAS, 110(42):17047-52.
Zhu L, et al., Patent No. PCT/US2013/072216.



MMP2-triggered Tumor Cell-specific Cytotoxicity
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COMBINATION THERAPY
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Tumor Growth Inhibition and Tumor Cell
Apoptosis
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Tumor growth inhibition (A) and tumor cell apoptosis analyzed by TUNEL
assay (B). Dose: 5mg/Kg PTX.



A . Schematic structure of survivin siRNA-S-S-PE/PXL PEG-PE
mixed micelle.

B. Physic characteristics of survivin siRNA PM and PM containing
survivin siRNA and PTX in combination (survivin siRNA/PXL PM)

Diameter
(nm % SD)

Survivin siRNA PM 21.5+3.3 0.160 £ 0.05

Formulation

Survivin siRNA/PXL PM l 25.0 3.6 l 0.190 + 0.07

PEG phosphohpld
siRNA tail



Doxorubicin cytotoxicity in (A) resistant and (B) sensitive
MCF-7 cells after treatment with sSIRNA nanopreparations
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MCF-7 resistant and sensitive cells were treated with formulations prepared with
SiRNA targeting MDR-1 (siMDR). Cells were treated with doxorubicin (1ug/mL) for
24, 48, 72 and 96 h and cell viability was measured. Data are expressed as the

mean £ SD (n=3).



PCR to evaluate MDR1 downregulation in tumors
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Therapeutic efficacy of NP containing survivin siRNA and PXL
in combination on SKQV3-tr resistant ovarian cancer xenograft
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*Relative tumor volume: Tumor volume in mm3 on day ‘n’ (Vn) / tumor volume at the start
of the treatment (Vo) plotted versus time in days.



NEW CONCEPTS IN COMBINATION
THERAPY USING LIPOSOMAL DRUGS
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