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Can we actually use mathematical models
to predict physiological phenomena?

Example 1: prediction of proline hinge in Kv1.4

Am J Physiol Heart Circ Physiol 284: H71-H80, 2003.
First published August 29, 2002; 10.1152/ajpheart.00392.2002.

Regulation of N- and C-type inactivation of Kv1.4 by
pH, and K: evidence for transmembrane communication

XIAOYAN LIL"? GLENNA C. L. BETT,! XUEJUN JIANG,' VLADIMIR E. BONDARENKO,!
MICHAEL J. MORALES,! AND RANDALL L. RASMUSSON!



Example 1: prediction of proline hinge in Kv1.4

Kvl.4 Kvl.2

no hinge hinge
From:
http://www.ks.uiuc.edu/ Homology model based From PDB file:
Research/smd_imd/ on KcsAfrom: Long et al. Science
Doyle et al. Science 280: Li et al. Am J Physiol 309: 897-903, 2005.

69-77, 1998. 284: H71-H80, 2003.


http://www.ks.uiuc.edu/
http://www.ks.uiuc.edu/
http://www.ks.uiuc.edu/

Example 2: mouse action potential shape
and activation time constant for |l ¢

Am J Physiol Heart Circ Physiol 287: H1378—H1403, 2004.
First published May 13, 2004; 10.1152/ajpheart.00185.2003.

Computer model of action potential of mouse ventricular myocytes

Vladimir E. Bondarenko,' Gyula P. Szigeti,' Glenna C. L. Bett,’
Song-Jung Kim,? and Randall L. Rasmusson'

' Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, University at Buffalo, State
University of New York, Buffalo, New York 14214-3078; and *Cell Biology and Molecular Medicine Cardiovascular Research
Institute, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103
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Example 2: mouse action potential shape
and activation time constant for |l
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Experiment from:
Wang et al. Circ Res
79: 79-85, 1996.
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time constant from

Xu et al. J Gen Physiol
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Brouillette et al. J Physiol
559: 777-798, 2004.
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Am J Physiol
287: H1378-H1403, 2004.
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Model cell

dv/dt = -1/C, (Ina + Inab

+ | + |

CalL + Ip(Ca) + ICab + INaCa NaK

+ | + | + e,
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Model cell is described by 44
ordinary differential
equations.

Am J Physiol Heart
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The mouse
action potentials

Simulated action potentials
and underlying currents
using the mouse ventricular
myocyte model.

PANEL A: The apex action
potential.

PANELS B,C: Currents
underlying the apex action
potential.

PANEL D: The septum
action potential.

PANEL E,F: Currents
underlying the septum
action potential.

Bondarenko et al., Am J
Physiol 287: H1378-H1403,
2004.



Next Generation Mathematical Models of Protein Signaling
Systems in Cardiac Cells

Non-compartmentalized models

Saucerman JJ, Brunton LL, Michailova AP, McCulloch AD. Modeling 3-adrenergic
control of cardiac myocyte contractility in silico. J Biol Chem 278: 47997-48003, 2003.

Saucerman JJ, Healy SN, Belik ME, Puglisi JL, McCulloch AD. Proarrhythmic
consequences of a KCNQ1 AKAP-binding domain mutation: computational models of
whole cells and heterogeneous tissue. Circ Res 95: 1216-1224, 2004.

Yang JH, Saucerman JJ. Phospholemman is a negative feed-forward regulator of Ca2*
in B-adrenergic signaling, accelerating B-adrenergic inotropy. J Mol Cell Cardiol 52;
1048-1055, 2012.

A compartmentalized model

Heijman J, Volders PGA, Westra RL, Rudy Y. Local control of B-adrenergic
stimulation: effects on ventricular myocyte electrophysiology and Ca?* transient. J Mol
Cell Cardiol 50: 863-871, 2011.



A Compartmentalized Mathematical Model of the
B.-Adrenergic Signaling System in Mouse Ventricular
Myocytes

Vladimir E. Bondarenko*

Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America

Abstract

the activation of this s%/stem produces inotropy, lusitropy, and chronotropy in the heart, such as increased magnitude and
relaxation rates of [Ca

developments of mathematical models for other species or for pathological conditions.

e89113. doi:10.1371/journal.pone.0089113
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The B,-adrenergic signaling system plays an important role in the functioning of cardiac cells. Experimental data shows that

*]; transients and contraction force, and increased heart rhythm. However, excessive stimulation of
B1-adrenergic receptors leads to heart dysfunction and heart failure. In this paper, a comprehensive, experimentally based
mathematical model of the ;-adrenergic signaling system for mouse ventricular myocytes is developed, which includes
major subcellular functional compartments (caveolae, extracaveolae, and cytosol). The model describes biochemical
reactions that occur during stimulation of B;-adrenoceptors, changes in ionic currents, and modifications of Ca?* handling
system. Simulations describe the dynamics of major signaling molecules, such as cyclic AMP and protein kinase A, in
different subcellular compartments; the effects of inhibition of phosphodiesterases on cAMP production; kinetics and
magnitudes of phosphorylation of ion channels, transporters, and Ca** handling proteins; modifications of action potential
shape and duration; magnitudes and relaxation rates of [Ca’"]; transients; changes in intracellular and transmembrane Ca**
fluxes; and [Na™]; fluxes and dynamics. The model elucidates complex interactions of ionic currents upon activation of ;-
adrenoceptors at different stimulation frequencies, which ultimately lead to a relatively modest increase in action potential
duration and significant increase in [Ca*']; transients. In particular, the model includes two subpopulations of the L-type
Ca®* channels, in caveolae and extracaveolae compartments, and their effects on the action potential and [Ca®*]; transients
are investigated. The presented model can be used by researchers for the interpretation of experimental data and for the

Citation: Bondarenko VE (2014) A Compartmentalized Mathematical Model of the [3,-Adrenergic Signaling System in Mouse Ventricular Myocytes. PLoS ONE 9(2):
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B,-adrenergic Signaling System in Mouse Ventricular

Myocytes

This is a virtual cell model, which allows for testing at least the following

drugs:

Isoproterenol Cilostamide
Epinephrine Milrione
Norepinephrine Rolipram
H-89 Ro 20-1724
Forskolin Propranolol
IBMX Esmolol
Nifedipine Bretylium

Calyculin A Amiodarone

Tetrodotoxin
Dofetilide
Quinidine
Verapamil
Lidocaine
Flecainide
Sotalol
E-4031



Reproducing the experimental data

mmm Freedman et al., 1995
C—/ Model
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B,-AR Phosphorylation
(% above basal)

1

10 pMIso 10 uM Iso + H-89

o

Stimulus

B,-adrenoceptors phosphorylation above basal level upon application of 10 uM
isoproterenol or 10 uM isoproterenol + PKA inhibitor H-89. Experimental data
from Freedman et al. (1995) are shown with black bars with errors, simulation
data are shown with gray bars. Effect of H-89 was simulated by setting [PKA],.;
=0 uM.
From Bondarenko, PL0S
ONE 9: 89113, 2014.
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Reproducing the experimental data

Normalized activity of adenylyl cyclases as
functions of Gg,.

Panel A: Experimental normalized activity
of ACS5 (filled circles) and AC6 (unfilled
circles) [Chen-Goodspeed et al., 2005].
Simulated data for normalized activity of
AC5/6 is shown by a solid line.

Panel B: Experimental normalized activity
of AC4 (filled circles from [Zimmermann
and Taussig, 1996] and unfilled circles
from [Gao and Gilman, 1991]). Simulated
data for normalized activity of AC4/7 is
shown by a solid line.

From Bondarenko, PL0S
ONE 9: e89113, 2014.
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Reproducing the experimental data
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Freedman et al., 1995 (30 min)

100

Panel A: Adenylyl cyclase activity as a function of
isoproterenol. Experimental data on AC activity

(in pmol/mg/min) in mouse hearts and ventricular
myocytes obtained after 10-minutes exposure to
isoproterenol are shown by unfilled circles

[Tepe and Liggett, 1999] and filled circles [Lemire et al.,
1998]. The solid line shows corresponding simulated
AC activities at different concentrations of isoproterenol.
Panel B: Desensitization of B,-ARs. Increase in adenylyl
cyclase activities above basal level (in %) are measured
at maximum (control, filled circles) and at two time
moments (5 min and 30 min, unfilled circles and unfilled
squares, respectively) after exposure to different
concentrations of isoproterenol [Freedman et al., 1995].
Corresponding simulated data for the maximum,
5-minute, and 30-minute delays are shown by solid,
dashed, and dash-dotted lines, respectively.

From Bondarenko, PL0S
ONE 9: e89113, 2014.



Reproducing the experimental data
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ventricular myocytes. (C) PDE activity in particulate
fraction. (D) Effect of Iso and IBMX on cAMP level.
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From Bondarenko, PL0S
ONE 9: e89113, 2014.
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Reproducing the experimental data
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Protein kinase A activation.

Panel A: PKA | and PKA Il activities as
functions of cAMP. Experimental data for
PKA | obtained by two methods are shown
by filled and unfilled circles [Dao et al.,
2006]; data for PKA Il obtained by Beavo et
al. [1974]. Corresponding simulated data
are shown by a solid (PKA ) and a dashed
(PKA 1) line.

Panel B: PKA activity ratio. Experimental
data were obtained without (-cAMP) and
with (+cAMP) externally applied 3 uM
cAMP, both without and with 1 uM
isoproterenol (black bars [Buxton and
Brunton, 1983]). We also performed four
simulations: no isoproterenol/basic level
CAMP (-cAMP), no isoproterenol/3 uM
CAMP (+cAMP), 1 uM isoproterenol/no
externally applied cAMP (-cAMP), and 1
UM isoproterenol/3 puM cAMP (+cAMP).
Then, the corresponding PKA ratios were

calculated. From Bondarenko, PL0S

ONE 9: e89113, 2014.
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Reproducing the experimental data

— Model
O O'Connell et al., 2003 (mouse)
® Buxton & Brunton, 1983 (rabbit)

o 4
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Time (s)

Model
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o

200
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Time (s)

Panel A: cAMP dynamics in ventricular
myocytes. Experimental data of normalized
cAMP in mouse [O’Connell et al., 2003] and
rabbit [Buxton & Brunton, 1983] ventricular
myocytes are shown by unfilled and filled
circles, respectively; simulation data is
shown by a solid line.

Panel B: PKA dynamics in ventricular
myocytes. Experimental data of normalized
PKA activity in rabbit [Buxton & Brunton,
1983] ventricular myocytes are shown by
unfilled circles; simulation data is shown
by a solid line.

Data in Panels A and B were obtained upon
application of 1 uM isoproterenol.

From Bondarenko, PL0S
ONE 9: e89113, 2014.



Reproducing the experimental data
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Simulation results
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Panel A: Simulated time courses of CAMP concentrations in caveolae (thin
solid line), extracaveolae (dashed line), and cytosolic compartments (dotted
line), and in the whole cell volume (bold solid line) after application of 1 uM
isoproterenol.

Panel B: Simulated time courses of PKA catalytic subunit concentrations in
caveolae (thin solid line), extracaveolae (dashed line), and cytosolic
compartments (dotted line), and in the whole cell volume (bold solid line) after
application of 1 uM isoproterenol.

Panel C: Simulated cellular activities of ACs and PDEs after application of 1 uM

isoproterenol.
From Bondarenko, PL0S

ONE 9: 89113, 2014.
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Simulation results

Control
——— PDES3inhibition
PDE4 inhibition

800

Control

PDE3 inhibition| ;%
PDE4 inhibition| { 3
Iso pulse !

100 200

300

400

Panel A: Simulated time courses of cellular
CcAMP concentrations for control conditions
(solid line), upon inhibition of PDE3 (dashed
line), and upon inhibition of PDE4 (dotted line)
after sustained application of 0.1 uM
isoproterenol at time moment t = 0 s. Activities
of PDE3 or PDE4 are inhibited by 90% to
simulate the effects of corresponding selective
inhibitors, cilostamide or milrione for PDE3, or
rolipam or Ro 20-1724 for PDEA4.

Panel B: Simulated time courses of cellular
CcAMP concentrations for control conditions
(solid line), upon inhibition of PDE3 (dashed
line), and upon inhibition of PDE4 (dotted line)
after pulsed application of 0.1 uM isoproterenol
at time moment t = 200 s for 30 s (thick solid
line). The degrees of inhibition of PDE3 and
PDE4 are the same as in Panel A.

From Bondarenko, PL0S
ONE 9: e89113, 2014.
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Simulation results
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Simulated major integral Ca?* fluxes during one cardiac cycle in the
isolated ventricular cell model for control conditions (Panel A) and
after application of 1 uM isoproterenol (Panel B). Pacing frequency is 1
Hz. Major integral Ca?* fluxes are shown after 300 s of stimulation. In
Panel B 1 uM isoproterenol is applied at time t =0 s.
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Simulated major integral Na* fluxes during one cardiac cycle in the
isolated ventricular cell model for control conditions (Panel A) and
after application of 1 uM isoproterenol (Panel B). Pacing frequency is 1
Hz. Major integral Na* fluxes are shown after 300 s of stimulation. In
Panel B 1 uM isoproterenol is applied at time t =0 s.
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Simulation results
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Experimental (Panel A) and simulated (Panel B) normalized APD as functions of
S1-S2 interval obtained for control conditions. Experimental data [Knollmann et
al., 2007] are shown for APD5, and APDy,, simulation data - for APD., and
APDy,. APDs are normalized to the corresponding values for S1-S2 interval of

200 ms.
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Simulation results
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