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Can we actually use mathematical models 

to predict physiological phenomena?

Example 1: prediction of proline hinge in Kv1.4



Example 1: prediction of proline hinge in Kv1.4

From: 

http://www.ks.uiuc.edu/

Research/smd_imd/

Doyle et al. Science 280:

69-77, 1998. 

Homology model based 

on KcsA from: 

Li et al. Am J Physiol

284: H71-H80, 2003.

From PDB file: 

Long et al. Science

309: 897-903, 2005.

KcsA Kv1.4 Kv1.2

hinge
no hinge

http://www.ks.uiuc.edu/
http://www.ks.uiuc.edu/
http://www.ks.uiuc.edu/


Example 2: mouse action potential shape 

and activation time constant for IKto,f



Example 2: mouse action potential shape 

and activation time constant for IKto,f
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Experiment from: 

Wang et al. Circ Res

79: 79-85, 1996.

Simulation from: 

Bondarenko et al. 

Am J Physiol

287: H1378-H1403, 2004.

Simulations with

experimental activation

time constant from

Xu et al. J Gen Physiol

113: 661-677, 1999

Experiment from: 

Brouillette et al. J Physiol

559: 777-798, 2004.



Model cell

Bondarenko et al.,  Am J Physiol Heart 

Circ Physiol 287: H1378-H1403,  2004.

dV/dt = -1/Cm(INa + INab

+ ICaL + Ip(Ca) + ICab + INaCa + INaK

+ IKto,f + IKto,s + IKur + IKss

+ IK1 + IKr + IKs + ICl,Ca + Istim)

Model cell is described by 44 

ordinary differential 

equations.



The mouse 

action potentials

Simulated action potentials 

and underlying currents 

using the mouse ventricular 

myocyte model. 

PANEL A: The apex action 

potential. 

PANELS B,C: Currents 

underlying the apex action 

potential. 

PANEL D: The septum 

action potential. 

PANEL E,F: Currents 

underlying the septum 

action potential. 

Bondarenko et al., Am J 

Physiol 287: H1378-H1403, 

2004.



Non-compartmentalized models

Saucerman JJ, Brunton LL, Michailova AP, McCulloch AD. Modeling β-adrenergic 

control of cardiac myocyte contractility in silico. J Biol Chem 278: 47997-48003, 2003.

Saucerman JJ, Healy SN, Belik ME, Puglisi JL, McCulloch AD. Proarrhythmic

consequences of a KCNQ1 AKAP-binding domain mutation: computational models of 

whole cells and heterogeneous tissue. Circ Res 95: 1216-1224, 2004.

Yang JH, Saucerman JJ. Phospholemman is a negative feed-forward regulator of Ca2+

in β-adrenergic signaling, accelerating β-adrenergic inotropy. J Mol Cell Cardiol 52: 

1048-1055, 2012.

A compartmentalized model

Heijman J, Volders PGA, Westra RL, Rudy Y. Local control of β-adrenergic 

stimulation: effects on ventricular myocyte electrophysiology and Ca2+ transient. J Mol

Cell Cardiol 50: 863-871, 2011.

Next Generation Mathematical Models of Protein Signaling 

Systems in Cardiac Cells





From Bondarenko, PLoS ONE 9: 

e89113, 2014.
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This is a virtual cell model, which allows for testing at least the following 

drugs:

Isoproterenol Cilostamide Tetrodotoxin

Epinephrine Milrione Dofetilide

Norepinephrine Rolipram Quinidine

H-89 Ro 20-1724 Verapamil

Forskolin Propranolol Lidocaine

IBMX Esmolol Flecainide

Nifedipine Bretylium Sotalol

Calyculin A Amiodarone E-4031

β1-adrenergic Signaling System in Mouse Ventricular 

Myocytes



Reproducing the experimental data
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10 M Iso 10 M Iso + H-89

β1-adrenoceptors phosphorylation above basal level upon application of 10 µM 

isoproterenol or 10 µM isoproterenol + PKA inhibitor H-89. Experimental data 

from Freedman et al. (1995) are shown with black bars with errors, simulation 

data are shown with gray bars. Effect of H-89 was simulated by setting [PKA]tot

= 0 µM.

From Bondarenko, PLoS

ONE 9: e89113, 2014.
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AC4/7 Model

A
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Normalized activity of adenylyl cyclases as 

functions of Gsα. 

Panel A: Experimental normalized activity 

of AC5 (filled circles) and AC6 (unfilled 

circles) [Chen-Goodspeed et al., 2005]. 

Simulated data for normalized activity of 

AC5/6 is shown by a solid line. 

Panel B: Experimental normalized activity 

of AC4 (filled circles from [Zimmermann 

and Taussig, 1996] and unfilled circles 

from [Gao and Gilman, 1991]). Simulated 

data for normalized activity of AC4/7 is 

shown by a solid line.

From Bondarenko, PLoS

ONE 9: e89113, 2014.

Reproducing the experimental data
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0.0001 0.001 0.01 0.1 1 10 100

N
o

rm
a
li
z
e
d

 A
C

 a
c
ti

v
it

y
 (

%
)

-20

0

20

40

60

80

100

120

Model (max)

Model (5 min)

Model (30 min)

Freedman et al., 1995 (max)

Freedman et al., 1995 (5 min)

Freedman et al., 1995 (30 min)

Isoproterenol (M)

0.0001 0.001 0.01 0.1 1 10

A
C

 a
c
ti

v
it

y
 (

p
m

o
l/
m

g
/m

in
)

0

20

40

60

80

Tepe & Liggett, 1999

Lemire et al., 1998

Model

A

B

Panel A: Adenylyl cyclase activity as a function of 

isoproterenol. Experimental data on AC activity 

(in pmol/mg/min) in mouse hearts and ventricular 

myocytes obtained after 10-minutes exposure to 

isoproterenol are shown by unfilled circles 

[Tepe and Liggett, 1999] and filled circles [Lemire et al., 

1998]. The solid line shows corresponding simulated 

AC activities at different concentrations of isoproterenol. 

Panel B: Desensitization of β1-ARs. Increase in adenylyl 

cyclase activities above basal level (in %) are measured 

at maximum (control, filled circles) and at two time 

moments (5 min and 30 min, unfilled circles and unfilled 

squares, respectively) after exposure to different 

concentrations of isoproterenol [Freedman et al., 1995]. 

Corresponding simulated data for the maximum, 

5-minute, and 30-minute delays are shown by solid, 

dashed, and dash-dotted lines, respectively.

From Bondarenko, PLoS
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Reproducing the experimental data



Basal Iso IBMX IBMX+Iso

c
A

M
P

 l
e

v
e

l
(p

m
o

l/
m

g
 p

ro
te

in
)

0

20

40

60

80

100

120

140
Rochais et al., 2006 (rat)

Hohl & Li, 1991 (dog)

Model

Total PDE2 PDE3 PDE4

P
D

E
 a

c
ti

v
it

y
(p

m
o

l/
m

in
/m

g
 p

ro
te

in
)

0

20

40

60

80

100

Georget et al., 2003

Richter et al., 2011 (mouse)

Richter et al., 2011 (rat)

Model

Total PDE2 PDE3 PDE4

P
D

E
 a

c
ti

v
it

y
 t

o
ta

l 
(%

)

0

20

40

60

80

100

120

Georget et al., 2003

Richter et al., 2011 (mouse)

Richter et al., 2011 (rat)

Model

Total PDE2 PDE3 PDE4

P
D

E
 a

c
ti

v
it

y
 (

%
)

P
a

rt
ic

u
la

te
 f

ra
c

ti
o

n

0

20

40

60

80

100

120

Mongillo et al., 2006

Model

A

B

C

D

Absolute (A) and relative (B) PDE activity in mouse 

ventricular myocytes. (C) PDE activity in particulate 

fraction. (D) Effect of Iso and IBMX on cAMP level.

From Bondarenko, PLoS

ONE 9: e89113, 2014.

Reproducing the experimental data
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A
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Protein kinase A activation. 

Panel A: PKA I and PKA II activities as 

functions of cAMP. Experimental data for 

PKA I obtained by two methods are shown 

by filled and unfilled circles [Dao et al., 

2006]; data for PKA II obtained by Beavo et 

al. [1974]. Corresponding simulated data 

are shown by a solid (PKA I) and a dashed 

(PKA II) line. 

Panel B: PKA activity ratio. Experimental 

data were obtained without (−cAMP) and 

with (+cAMP) externally applied 3 µM 

cAMP, both without and with 1 µM 

isoproterenol (black bars [Buxton and 

Brunton, 1983]). We also performed four 

simulations: no isoproterenol/basic level 

cAMP (−cAMP), no isoproterenol/3 µM 

cAMP (+cAMP), 1 µM isoproterenol/no 

externally applied cAMP (−cAMP), and 1 

µM isoproterenol/3 µM cAMP (+cAMP).  

Then, the corresponding PKA ratios were 

calculated.
From Bondarenko, PLoS

ONE 9: e89113, 2014.

Reproducing the experimental data
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Panel A: cAMP dynamics in ventricular 

myocytes. Experimental data of normalized 

cAMP in mouse [O’Connell et al., 2003] and 

rabbit [Buxton & Brunton, 1983] ventricular 

myocytes are shown by unfilled and filled 

circles, respectively; simulation data is 

shown by a solid line. 

Panel B: PKA dynamics in ventricular 

myocytes. Experimental data of normalized 

PKA activity in rabbit [Buxton & Brunton, 

1983] ventricular myocytes are shown by 

unfilled circles; simulation data is shown 

by a solid line. 

Data in Panels A and B were obtained upon 

application of 1 µM isoproterenol.

From Bondarenko, PLoS

ONE 9: e89113, 2014.

Reproducing the experimental data
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The effects of Iso and

Calyculin A on the L-type

Ca2+ current. (A) and (B) 

Experimental data by

Bracken et al., 2006. 

(C) and (D) simulated 

data. (A) and (C) Current 

traces. (B) and (D) I-V 

relationships.
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Simulation results
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Panel A: Simulated time courses of cAMP concentrations in caveolae (thin 

solid line), extracaveolae (dashed line), and cytosolic compartments (dotted 

line), and in the whole cell volume (bold solid line) after application of 1 M 

isoproterenol. 

Panel B: Simulated time courses of PKA catalytic subunit concentrations in 

caveolae (thin solid line), extracaveolae (dashed line), and cytosolic 

compartments (dotted line), and in the whole cell volume (bold solid line) after 

application of 1 M isoproterenol. 

Panel C: Simulated cellular activities of ACs and PDEs after application of 1 M 

isoproterenol.
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Simulation results
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Panel A: Simulated time courses of cellular 

cAMP concentrations for control conditions 

(solid line), upon inhibition of PDE3 (dashed 

line), and upon inhibition of PDE4 (dotted line) 

after sustained application of 0.1 M 

isoproterenol at time moment t = 0 s. Activities 

of PDE3 or PDE4 are inhibited by 90% to 

simulate the effects of corresponding selective 

inhibitors, cilostamide or milrione for PDE3, or 

rolipam or Ro 20-1724 for PDE4. 

Panel B: Simulated time courses of cellular 

cAMP concentrations for control conditions 

(solid line), upon inhibition of PDE3 (dashed 

line), and upon inhibition of PDE4 (dotted line) 

after pulsed application of 0.1 M isoproterenol 

at time moment t = 200 s for 30 s (thick solid 

line). The degrees of inhibition of PDE3 and 

PDE4 are the same as in Panel A.
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Simulated action potentials (Panel A) and 

underlying ionic currents of the isolated 

ventricular cell model for control 

conditions (Panel B) and after application 

of 1 M isoproterenol (Panel C).
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Simulation results
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Simulation results

Simulated major integral Ca2+ fluxes during one cardiac cycle in the 

isolated ventricular cell model for control conditions (Panel A) and 

after application of 1 M isoproterenol (Panel B). Pacing frequency is 1 

Hz. Major integral Ca2+ fluxes are shown after 300 s of stimulation. In 

Panel B 1 M isoproterenol is applied at time t = 0 s. 
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Simulated major integral Na+ fluxes during one cardiac cycle in the 

isolated ventricular cell model for control conditions (Panel A) and 

after application of 1 M isoproterenol (Panel B). Pacing frequency is 1 

Hz. Major integral Na+ fluxes are shown after 300 s of stimulation. In 

Panel B 1 M isoproterenol is applied at time t = 0 s. 

Simulation results
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Simulation results
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Simulation results

The effects of caveolae and extracaveolae ICaL block on action 

potential and Ca2+ transients. Control conditions (Panel A, B) and after 

application of 1 M isoproterenol (Panels C, D). 
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Let Us Meet Again

We welcome you all to our future conferences of 
OMICS Group International  

Please Visit:

www.omicsgroup.com

www.conferenceseries.com

www.metabolomicsconference.com

http://www.omicsgroup.com/
http://www.conferenceseries.com/
http://www.pharmaceuticalconferences.com/
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