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Cholesteric Liquid Crystal

• Periodic helical structure Bragg reflection
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• Distributed Feedback (DFB)

 

Cholesteric Liquid Crystal Laser

� Active medium:  LC (+dye)

� No external mirrors

� material is its own cavity
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FITTING THEORY AND EXPERIMENT





Fig. 1, Matsuhisa et al, Appl. Phys. Lett. 90, 091114 (2007)



EIGEN WAVES IN CHIRAL LC

As it is known [7,8,9] the eigenwaves corresponding to propagation of 
light in chiral LC along a spiral axes, i.e. the solution of the Maxwell 
equation

∂2E/∂z2  = c-2 ε ε ε ε(z) ∂2E/∂t2 (28)

are presented by a superposition of two plane waves of the form

E(z,t) = e-iωt [E+n+exp(iK +z)+ E-n-exp(iK -z)] (29)

τ

E(z,t) = e [E n+exp(iK z)+ E n-exp(iK z)] (29)

where ω is the light frequency, n± are the two vectors of circular 
polarizations, εεεε(z) is the dielectric tensor of the chiral liquid crystal [7 -
10], c is the light velocity and  the wave vectors K± satisfy to the 
condition

K + - K - = ττττ, (30)

where ττττ is the  reciprocal lattice vector  of  the LC spiral (τ=4π/p, where 
p is the cholesteric pitch). 



The wave vectors K± in the four eigen solutions (29) are determined by the 
eq.(30) and the following formulas

K j
+ =τ/2τ/2τ/2τ/2 ± κ{1+(ττττ/2κ)2  ± [(ττττ/κ)2  + δ2 ]½}½ ,                               (31)

Where j numerates the eigen solutions with the ratio of  amplitudes (E-/E+) 
given by the expression

ξξξξj=(E-/E+)j = δ/[(K j
+ - ττττ)2/κ2-1],                                             (32)

where κ =ωε0
½/c, ε0 =(ε||+ ε⊥)/2, δ =( ε|| - ε⊥) /( ε||+  ε⊥) is the dielectric 

anisotropy, and  ε||, ε⊥ are the principal values of  the LC dielectric tensor [8 -
10]. Define the ratio of the dielectric constant imaginary part to the real part as  

γ, i.e. 

ε=ε0(1+iγ ). 



Schematic of the boundary 

problem for edge modes
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UNABSORBING LC LAYER
γγγγ=0 (δδδδ(νννν-1) is plotted at the abscissa, see below)
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EM frequencies
It occurs that for nonabsorbing LC layers the real parts of EM 
frequencies are coinciding with the positions of the beats minima of the 
reflection coefficient R. 

The frequency positions of the beats minima of the 

reflection coefficient R correspond to

qL=πn,  ±ν=1+(πn/a)2/2,   n= 1,  2,  3  …..,

ν=2(ω−ωB)/δωB, ωB =cτ/2e0
½,                a= δLτ/4.

The complex frequencies are determined by the dispersion equation The complex frequencies are determined by the dispersion equation 

(the solvability condition of the homogeneous Eqs.(8)) :

tgqL= i(qττττ/κ2)/[(ττττ/2κ)2+ (q/κ)2-1]                                     (12)

In a general case the solution of Eq.(12) determining the EM

frequencies ωEM =ω0
EM(1+i∆) may be found only numerically. For a 

sufficiently small ∆ ensuring the condition LImq<<1 an analytic solution 

exists:

∆=-½ δ(nπ)2/(δLτ/4)3.

The corresponding EM life-time is �=(L/c)(δL/pn)2



Calculated EM coordinate (in the dimensionless 
units zτ)  energy distribution inside the CLC layer 

for the three first edge modes (δ=0.05, N=33, 

n=1,2,3).
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Fig.1a
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anomalously strong absorption (1-R-T)
(at the edge mode frequencies (a) γγγγ=0.001, (b) γγγγ=0.005 )
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REFLECTION AND TRANSMISSION CLOSE TO FIRST 

EDGE LASING MODE
γγγγ=- 0.00565 (δδδδ=0.05, 4πL/p=300)
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Edge lasing modes 
The equation determining the edge lasing modes (at γ<0) is given by  

the following expression:

tgqL= i(qτ/κ2)/[τ/2κ)2+ (q/κ)2-1] (37)

In general case, this equation has to be solved numerically. However 
for a very small negative γ the frequency values of the edge lasing 
modes are pinned to the frequencies of zero value of reflection 
coefficient in its frequency beats outside of the stop band edge for the coefficient in its frequency beats outside of the stop band edge for the 
same layer with zero imaginary part of the dielectric tensor [10,13]. It is 
why for this limiting case for a small |γ| and L|Imq|�1 the threshold 
values of the gain (γ) for the edge lasing modes may be found 
analytically:

γ =-δ(nπ)2/a3 = -δ(nπ)2/(δLτ/4) 3 (38)

The threshold values of |γ| are inversely proportional to the third power 
of the layer thickness and a minimal value of |γ| corresponds to n=1.



OPTIMIZATION OF PUMPING

The highest efficiency of the pumping and the lowest value of the 
lasing 

threshold gain may be reached if the lasing occurs at the first EM 

frequency and the pumping wave is under conditions of the 

anomalously strong absorption effect. These may occur in a collinear 

geometry, however it demands a very special choice of the CLC geometry, however it demands a very special choice of the CLC 

parameters. A regular way to reach the optimization is to use a non 

collinear pumping [11,14]. The corresponding value of the angle 
between the 

spiral axis and the pumping wave propagation direction is determined 

approximately as:

θ=arccos[ωl/ωp],

where ωl and ωp are the lasing and pumping frequency, respectively.



SCHEMATIC OF A DEFECT MODE STRUCTURE
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T(d) versus the frequency  for a nonabsorbing CLC,  δ=0.05, 

N=33,  d/p=0.1

Fig.3a



T(d) versus the frequency  for a nonabsorbing CLC,  δ=0.05, 

N=33.  d/p=0.25 

Fig.3b



R(d) versus the frequency for a nonabsorbing CLC at 

d/p=200.1; δ=0.05, N=33.

Fig.4a



Calculated distribution of the squared field modulus in the CLC layers 
versus the distance from the defect layer centre (x=z/p) (δ=0.05,0.04,0.025 

from the top curve to the bottom, respectively); d/p=1/4, N=50 .
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ABSORBING AND AMPLIFYING LC
(Thick CLC layers)

Assume for simplicity that the absorption in LC is isotropic, i.e. ε=e0(1+iγ). 

For thick CLC layers an analytic solution for γ ensuring maximal absorption 

may be found. For the position of ωD just in the middle of the stop band the 

expression for γ reduces to

γ γ γ γ =(4/3����)(p/L) exp[-2����δ(L/p)] .

..

For thick CLC amplifying layers an analytic solution for γ (gain) 

corresponding to the lasing threshold may be found. For the position of ωD just 

in the middle of the stop band the expression for γ is given by the formula

γ γ γ γ =-(4/3����)(p/L)exp[-2����δ(L/p)]. 



 DM lifetime (normalized by the time of light flight throw 
DMS) dependence on the DM frequency location inside 

stop-band calculated for thick CLC layers (δ=0.05,  N=40)



Transmission coefficient │T(d,L)│2

for γγγγ= -0.000675 (δδδδ=0.05,  N=33, d/p=2.25)
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ACTIVE DEFECT LAYER (Device Configuration)

・The cell gap was 3~4 µm, where only two defect-modes (532 nm and 565 nm) exist in 

reflection band for defect-mode excitation and defect-mode lasing       

・The cell was sandwiched by two polymer cholesteric liquid crystal (PCLC) mirror 

(reflection bandwidth 60 nm, center 545 nm) 

・Pyrromethene 580 (laser dye, Exciton) was used to obtain laser action at the 

wavelength of 565 nm 
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Fig.2a Intensity transmission coefficient │T(d,L)│2 for a low birefringent defect layer 

versus the frequency (Here and at all other figures “ frequency”     ����= δ[2(ωωωω−−−−ωωωωB)/(δωωωωB) -1)]) 

for  diffracting incident and exiting polarizations at the birefringent  phase shift at the defect 

layer thickness ∆ϕ∆ϕ∆ϕ∆ϕ = π/20  at d/p=0.25; Lt=2pN,  where here and at all other figures δ=0.05 

and N= 33 is the director half-turn number at the CLC layer thickness L. 
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Fig.2b Intensity transmission coefficient │T(d,L)│2 for a low 

birefringent defect layer versus the frequency for  diffracting incident and 

exiting polarizations at the birefringent  phase shift at the defect layer 

thickness ∆ϕ∆ϕ∆ϕ∆ϕ = π/16
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Fig.2c Transmission coefficient │T(d,L)│2 for a low birefringent defect 

layer versus the frequency for  diffracting incident and exiting 

polarizations at the birefringent  phase shift at the defect layer thickness 

∆ϕ∆ϕ∆ϕ∆ϕ = π/12
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Fig.2d Transmission coefficient │T(d,L)│2 for a low birefringent defect 

layer versus the frequency for  diffracting incident and exiting 

polarizations at the birefringent  phase shift at the defect layer thickness 

∆ϕ∆ϕ∆ϕ∆ϕ = π/8
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Fig.2e Transmission coefficient │T(d,L)│2 for a low birefringent defect 

layer versus the frequency for  diffracting incident and exiting 

polarizations at the birefringent  phase shift at the defect layer thickness 

∆ϕ∆ϕ∆ϕ∆ϕ = π/6 
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Fig.2f Transmission coefficient │T(d,L)│2 for a low birefringent defect 

layer versus the frequency for  diffracting incident and exiting 

polarizations at the birefringent  phase shift at the defect layer thickness 

∆ϕ∆ϕ∆ϕ∆ϕ = π/4
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Fig.2g Transmission coefficient │T(d,L)│2 for a low birefringent defect 

layer versus the frequency  for  diffracting incident and exiting 

polarizations at the birefringent  phase shift at the defect layer thickness 

∆ϕ∆ϕ∆ϕ∆ϕ = π/2
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Fig.3a Calculated total intensity transmission
coefficient versus the frequency for diffracting incident polarization at the 

birefringent  phase shift at the defect layer thickness ∆ϕ ∆ϕ ∆ϕ ∆ϕ = π/20  for a 

nonabsorbing CLC  at d/p=0.25. 
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Transmission coefficient │T(d,L)│2 for a low birefringent defect layer 

versus the frequency for  diffracting incident and exiting polarizations at 

the birefringent  phase shift at the defect layer thickness ∆ϕ∆ϕ∆ϕ∆ϕ = π/6, γγγγ= -

0.002355 (δδδδ=0.05, N=33, d/p=2.25)
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CONCLUSION

1.Presented approach allows to reveal clear

physical picture of the localized modes

2.Predicted low lasing threshold under the

conditions of anomalously strong absorption

effect

3.An interconnection between the gain and other3.An interconnection between the gain and other

LC and defect layers parameters at the

threshold pumping energy for lasing at the

defect (as well at the stop band edge) mode

frequency is revealed

4.Much to be done in the theory and experiment
The work is supported by the RFBR grant 12-02-01016-a.



REFERENCES
.

1. Belyakov, V.A. and Dmitrienko, V.E. (1989). Optics of Chiral Liquid 

Crystals,  in Soviet Scientific reviews / Section A, Physics Reviews (ed. 

I.M.Khalatnikov, Harwood Academic Publisher), v.13, p.1-203.

2. Belyakov, V.A. (1992). Diffraction  Optics of Complex  Structured 

Periodic Media, Springer  Verlag, New York, Chapt. 4 .

3. V.A.Belyakov, Ferroelectrics, 344, 163 (2006).

4. V.A.Belyakov, MCLC, 453, 43 (2006).

5. V.A.Belyakov, MCLC, 494, 127 (2008).

6. V.A.Belyakov, and S.V.Semenov, MCLC, 507, 209 (2009).6. V.A.Belyakov, and S.V.Semenov, MCLC, 507, 209 (2009).

7. V.A.Belyakov, and S.V.Semenov, Zh.Eksp.Teor.Fiz., 136, 797 (2009); 

(English translation JETP) 109, 687 (2009).

8. V.A.Belyakov, and S.V.Semenov, JETP, 112, 694 (2011).

9. V.A.Belyakov, MCLC, 559, 39 (2012); MCLC,559, 50 (2012).

10. V.A.Belyakov, and S.V.Semenov, JETP, 118, 798 (2014).

11. V.A.Belyakov, Localized Optical Modes in optics of Chiral Liquid 

Crystals in “New Developments in Liquid Crystals and Applications”, 

2013 (Ed. P.K. Choundry, Nova Publishers, New York), Chp. 7, p.199.



Let Us Meet Again

We welcome all to our future group 
conferences of Omics group international

Please visit:Please visit:

www.omicsgroup.com

www.Conferenceseries.com

http://optics.conferenceseries.com/


