Ocular melanin modulates pharmacokinetics and drug disposition of therapeutic agents

Viral Kansara, Ph.D.

Novartis Institutes for Biomedical Research, Inc.

Ophthalmology 2014

Biopolymer melanin is in front and back of the eye

- Melanin is a heterogenous bio-polymer of Pyrrol containing free carboxyl and phenolic hydroxyl groups
- Synthesized from Tyrosine and Cysteine via enzymatic and polymerization steps
- Melanin acts as a free radical scavenger and photooxidation protector; Protects from UV light-induced damage
- Ocualr melanin exists in two forms: pheomelanin (red) and eumelanin (black)
 - Uveal tract Pheomelanin > Eumelanin
 - RPE Eumelanin > Pheomelanin
- In vitro studies suggest that the greater the eumelanin to pheomelanin ratio, the more anti-oxidative and less photo reactive the pigments
- Some evidence suggests that light-colored eyes are at higher risk for the occurrence of uveal melanoma and AMD¹

Melanin content in human brown eyes ug/mg of tissue; mean <u>+</u> SEM (% of total uveal melanin) *J Ocular Pharm; PMID: 1402293*

¹Age-Related Eye Disease Study Research Group, 2000; Frank, 2000; Friedman, 1999; Klein, 1995, 2003, 2006; Sandberg, 1994; Weiter, 1985

Melanin levels in human RPE decrease with age

Melanin concentration versus age of donors

 Each value represents data from a single donor; in 12 cases, where the two eyes of a given donor were analyzed separately; a single data point represents the mean of the two values.

Reduction could be due to biochemical degradation and melano-lipofuscin complex formation

Melanin level is lower in macula than in periphery of normal human RPE

Melanin concentrations in three different regions of pigment epithelium in **eight postmortem human eyes** from donors 33-77 years of age.

- N = 16 donor eyes grouped according to age (Five eyes from donors 18-50 years of age; four eyes from donors 51-60 years of age, and seven eyes from donors 61-87 years of age)
- Bars represent the mean ± S.E.M.

^{*}RPE cells were harvested from post-mortem eyes

Melanin content varies among different preclinical species and strains

Regional differences in the melanin pigment content of (a) retina and (b) choroid-RPE of human

Study limitations: Small sample size (n= 3 to 6 eyes)

Overall trend for melanin content in retina + choroid: Monkey > Rabbit > Human

U NOVARTIS

Ocular melanin binding impacts drug disposition in the eye

Ocular PK

- Melanin in iris/ ciliary body may impact anterior segment exposure,
 e.g. Antiglaucomatous: Timolol topical drop
- Melanin in RPE-choroid impacts posterior segment exposure e.g. NVS-1 rat PK (BN/SD AUC fold difference: 7x (PEC), 59x (Retina), 2x (Plasma)
- Efficacy / PD
- Free drug (F_u) available at the site of action
- Safety
- · Local drug accumulation
- Understanding of melanin binding characteristics may also help:
 - Explain PK/PD disconnect
 - Modeling & Simulation

Hypothetical scenario of drug disposition following topical and IVT administration

Case study: Impact of melanin binding on ocular PK

NVS-1 exhibited different ocular PK profiles in pigmented and albino rats upon PO dosing

- Brown Norway and Sprague-Dawley Male rats Male rats; N=2 rats or 4 eyes /time point
- PO dosing; 10 mpk; Formulation: 0.5% CMC/ 0.5% Tween80
- Samples: Retina, Posterior Eye Cup (RPE/choroid, sclera), Plasma

Ratio(s) BN/SD	AUC Ratio	Cmax Ratio
Plasma	2.0	0.9
PEC	6.6	7.7
Retina	59.3	24.4

❖ Melanin binding may be responsible for >3 fold higher AUC and longer retention in ocular tissues of BN rats

Melanin affinity based chromatography in-vitro methodology

Basis of Affinity Trend analysis

- Commercially available columns e.g Human Serum Albumin or Phospholipid
- No commercial melanin column is available for determining melanin affinity

Development of a melanin-affinity based in-vitro method

- Custom made melanin columns (50 x 3mm x 5um) based on published literature¹
- ➤ Mobile phase: 0 30% IPA gradient; (A) 50mM ammonium acetate buffer pH 7.4 (B) propan-2-ol
- ➤ Flow Rate: 1.0 ml min⁻¹
- ➤ High binders: Quinine, Fluphenazine, Amitriptyline, Imipramine,
- Low binder: Carbamazepine

¹Ibrahim, H.; Aubry, A. Analytical Biochemistry 1995, 229, 272-277.

Characterization of a chromatography based melanin affinity columns

Column to column variation appears to be acceptable

Chromatography based melanin column seems to be suitable for identifying trends						
Traditional method		LC method				
Compound	<u>Rank</u>	CR1	<u>LC</u> rank	<u>LogKmel</u>		
NVS-1	1	0.67	2	0.84		
NVS-2	2	1.55	1	0.69		
NVS-3	3	5.50	4	1.18		
NVS-4	4	8.45	3	1.05		
NVS-5	5	18.33	6	1.42		
NVS-6	6	62.62	5	1.24		

Molecular scaffolds influence melanin binding affinity

❖ 270 compounds have been screened in this high-throughput assay. This represents a larger and more diverse data set than existing literature data sets.

In vivo validation of the in-vitro affinity method via ocular pharmacokinetics

Objective :

• Establish a correlation between *in-vitro* and *in-vivo* assays

Study protocol:

- High affinity NVS-1
- Medium affinity NVS-2
- Low affinity NVS-3

Strain/Route of Administration:

- Brown Norway (pigmented) and Sprague Dawley (non pigmented) Rats
- IV injection
- Dose: 1mpk solution (0.25mL)
- Time Points: 0, 30m, 1hr, 3hr, 6hr, 24hr, 48hr
- Tissue Collected: Retina, PEC, and Plasma
- Bioanalysis was performed by LC-MSMS

Significant increase in exposure in posterior eye cup of pigmented rats was observed for a high melanin binder

"high" melanin affinity (NVS-1):

- ❖ PEC exposure: Pigmented rats >> non-pigmented rats (~50x)
- ❖ Retina exposure: Pigmented rats > non-pigmented rats (~2x)
- No significant difference in plasma exposure between pigmented and non-pigmented rats

Summary

- Melanin binding can impact ocular pharmacokinetics
- Validated a melanin affinity based in-vitro method
- Established In vitro—in vivo correlation (IVIVC)
- In vitro melanin binding assay can be used for rank ordering or differentiating the compound based on their ocular melanin affinity
- ❖ Future opportunities: C57/BL6 and B6(Cg)-Tyrc-2J/J (Tyrosinase deficient mice)

Applications to Drug Discovery and Development

- Evaluate drug-melanin binding characteristics at an early stage of drug discovery
 - in vitro assays
- If Melanin-binding is found, then check for reversibility and it's impact on ocular and plasma PK
 - in vivo assay in pigmented and non-pigmented animals
- If irreversible and high affinity drug-melanin is observed, run QWBA for drug distribution in skin, ear and brain (sensory organs)
- High melanin affinity compounds should be then discussed with PCS and Translation Medicine colleagues to enable them to modify the protocol <u>if necessary</u>
 - at least one pigmented species in toxicity studies
- Species and strain specific differences in melanin levels need to be considered during interpretation of preclinical data

Acknowledgements

- NIBR Ophthalmology/ Pharmacology team
 - Timothy Drew, Debby Long, Bruce Jaffee
- NIBR Chemistry team
 - ❖ John Reilly, Cornelia Forster, Mike Serrano-Wu
- ❖ NIBR MAP and Analytical Sciences team
 - ❖ Jakal Amin, Ann Brown, Vinayak Hosagrahara
- ❖ NIBR Computer Aided Drug Discovery team
 - Sarah Williams

