

nternational

A Comparison of Samplers for Inhalable Welding Fumes and Laboratory Analysis for Manganese

VERPAELE Steven*, JOURET Jonathan*, VANOIRBEEK Jeroen**, POELS Katrien**, GODDERIS Lode**, HAEGEMAN Martine⁺, MARTENS Frank[‡], LEPLA Bart[‡]

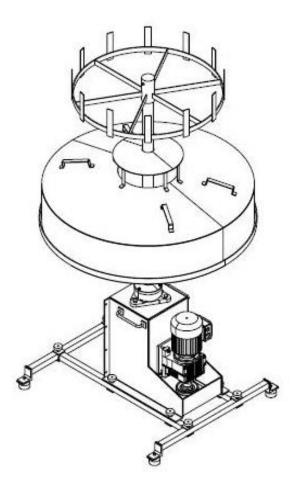
* Adhesia vzw, non-profit association licensed by the Belgian Law as external company for occupational prevention and protection, Oude Graanmarkt 10, 1000 Brussels, Belgium

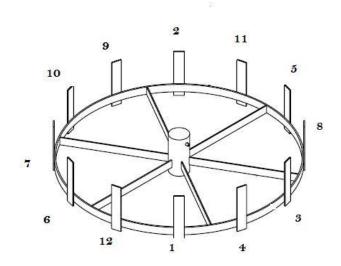
**Occupational and Environmental Hygiene, Katholieke Universiteit Leuven, Kapucijnenvoer 35 blok D box 7001, 3000 Leuven, Belgium †Central Laboratory of The Fund for Occupational Diseases, Sterrenkundelaan 1, 1210 Brussels, Belgium ‡Laboratory for Industrial Toxicology, AZ Groeninge Kortrijk, Reepkaai 4, 8500 Kortrijk, Belgium

Belgian Center for Occupational Hygiene

Introduction

- Welding fumes and manganese exposure is a major domain of interest for Occupational Hygienists
- Important to decide which material should be used for sampling
- International methodology is not consistent according to the use of:
 - Samplers
 - Sampling filters
 - Sampling time
 - Laboratory analysis
- Dose-response recalculations out of historical data
 - ! Conditions have to be comparable


Laboratory vs WP


- Laboratory
 - Controllable atmosphere
 - Controllable homogeneous aerosol
 - Equal exposure for each sampler
- Workplace
 - − Stationary ⇔ personally
 - Work routine not controllable
 - No equal exposure

Workplace Atmosphere Multisampler: WAM

Workplace Atmosphere Multisampler: WAM

WAM

- WAM makes it possible to
 - Provide a homogeneous aerosol for all 12 samplers \rightarrow 2,8 rpm
 - No interferences from pump flows \rightarrow shielded with decks
 - Mobile & light \rightarrow comparisons possible at different places
 - Adjustable for explosive atmospheres (mines, ATEX,...)
 - Good hight \rightarrow respiration zone
 - Stable
 - Can it be used to compare inhalable samplers according to Witschger,
 O., Willeke, K., Grinshpun, S.A., Aizenberg, V., Smith, J. and Baron, P.
 "Simplified Method for Testing Personal Inhalable Aerosol Samplers",
 J. of Aerosol Science, 29:855-874 (1998)?

Needs validation

WAM: Validation part 1 – is the use of a torso required?

- According to Witschger et al. "Simplified Method for Testing Personal Inhalable Aerosol Samplers", J. of Aerosol Science, 29:855-874 (1998) a torso is needed when inhalable samplers are compared
- A torso was used next to the WAM runs

WAM: Validation part 2 – equal sampling

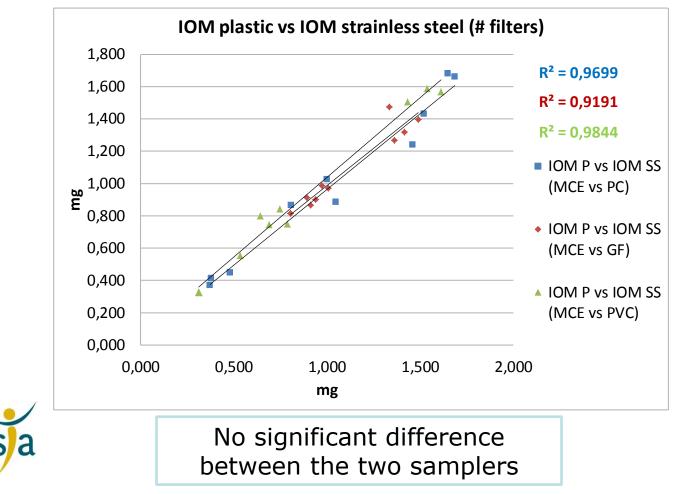
- Gravimetric analysis
- 3 runs with 6 identical combinations of plastic IOM samplers filled with MCE filters
- Average concentration and range
- SD
- RSD (%)

WAM: Validation

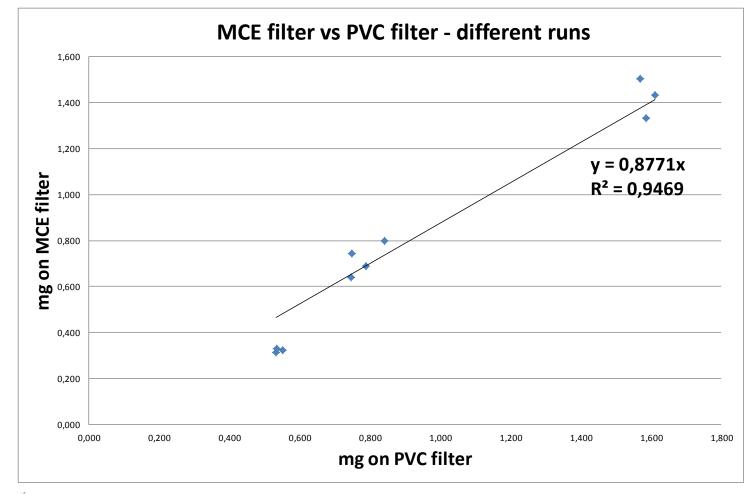
- Goal: Average RSD < 10% for each type of sampler
 - Pump fault
 - Gravimetric analysis
 - Samples with pump errors are not included in these figures
- EN 482 Expanded uncertainty requirements for measurements for comparison with limit values and periodic measurements
 - Long term sampling (> 2 hours)
 - Exposure index (Concentration measured/Limit value) 0,1 < 0,5 \rightarrow 50%
 - Exposure index (Concentration measured/Limit value) 0,5 2 \rightarrow 30%
- EN 689 Assesment of exposure by inhalation to chemical agents for comparison with limit value and measurement strategy
 - Exposure index < 0,1 \rightarrow exposure negligible
 - − Exposure index 0,1 < 0,25 \rightarrow exposure under control
 - Exposure index 0,25 < 0,5 → exposure not under control follow up needed identify exposure
 - Exposure index > 1 →over exposure immediate measures needed to reduce exposure

WAM: Validation - results

- Is a torso required in a workplace calm air conditions?
 - The variation between the WAM and the Simplified Torso was not more than 4,9% → OK
- Does the WAM equally sample?
 - The average variation of the 3 runs was 5,5% \rightarrow OK

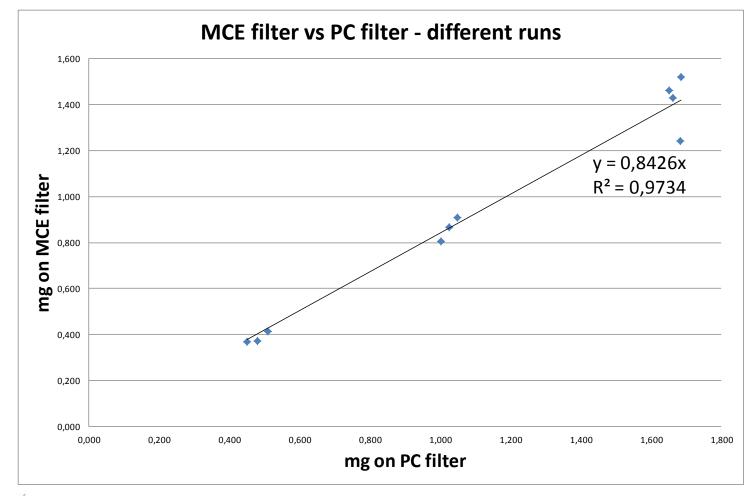


WAM can be used for a comparison study of inhalable samplers

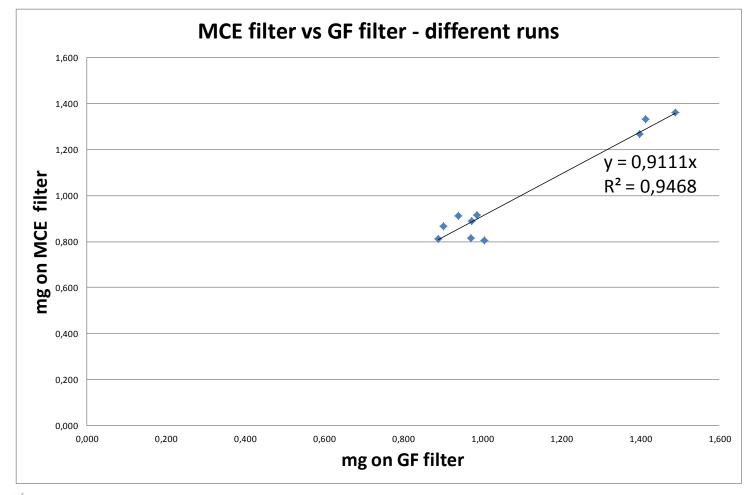


Results - Comparison inhalable samplers

- 2 types of samplers where compared with different filters
 - MCE filter was used as a reference filter
 - Plastic IOM and cassette vs Stainless steel IOM and cassette

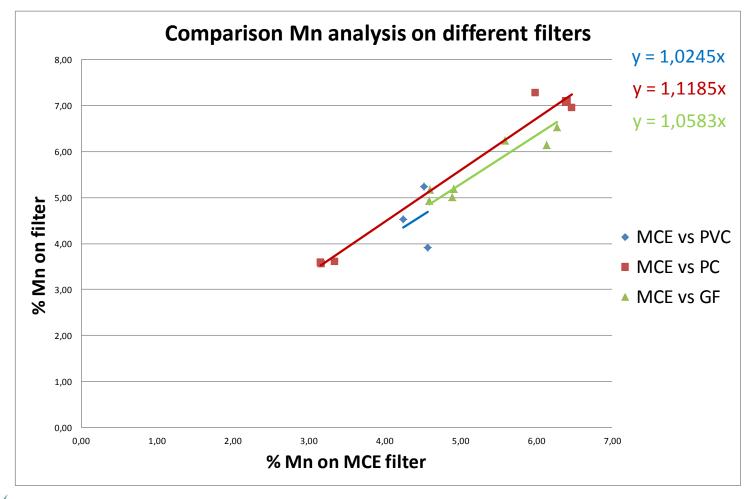


Results - Comparison filters used



Results - Comparison filters used

Results - Comparison filters used



Results - Comparison Manganese analysis

- Three different laboratories performed the analysis of manganese on the different filters:
 - Using there in house method
 - 2 laboratories used Inductive Coupled Plasma (ICP)
 - One laboratory used ICP-AES
 - One laboratory used ICP-MS
 - 1 laboratory used Atomic Absorption Spectroscopy AAS

Results - Comparison Manganese analysis

Conclusion

- Gravimetric analysis found that the MCE filters were under sampling
 - compared to the PVC (y=0.88x)
 - compared to the PC (y = 0.82x)
 - compared to the GF (y = 0.91x)
- No significant differences were found in between the types of filters
- No significant differences were found between the IOM plastic sampler and cassette and the IOM stainless steel sampler and cassette
- No significant differences where found between the methods. Although it seems that lower concentrations are more accurately measured by ICP techniques
- Manganese analysis showed that MCE filters retain more manganese compared to PC and GF

Conclusion

- Manganese analysis showed that MCE filters retain more manganese compared to the other filters
 - 2% more than PVC filters
 - 6% more compared to GF filters
 - 13% more compared to PC filters
- WAM can be easily used for evaluation and comparisons of samplers in the workplace
- This is necessary to better understand the behaviour and sampling in the workplace
 - New PTS
 - WASP
 - ALASCA
 - How do laboratories perform in analyzing real workplace samples (proficiency)

Discussion

- Further research is necessary to determine the retention of metals and metalloids on different filters
- More comparisons of analysing techniques for metals and metalloids are necessary to have a better understanding of the differences (low concentration range)
- Could those differences explain the differences in metabolite results? Especially for welding fumes.

Thank you for your attention

Please take a look at:

A Comparison of the Performance of Samplers for Respirable Dust in Workplaces and Laboratory Analysis for Respirable Quartz

http://annhyg.oxfordjournals.org/content/early/2012/07/17/annhyg.mes038.full

Differences between samplers for respirable dust and the analysis of quartz -An international study

http://www.astm.org/DIGITAL_LIBRARY/STP/PAGES/STP156520120188.htm

Q&A

Steven Verpaele, MSc Occupational Hygienist – Adhesia-Mensura Belgium President Belgian Centre for Occupational Hygiene (BeCOH) +32496289688 <u>steven.verpaele@adhesia.be</u> <u>www.adhesia.be</u> <u>steven@becoh.be</u> <u>www.becoh.be</u>

