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First peptide hormone whose structure was determined
and the first to be chemically synthesized in its
biologically active form.

T ST 577

Cys-Tyr-lle-Gln-Asn-Cys-Pro-Leu-Gly-NH,

Du Vigneaud V, Ressler C, Trippett S. The sequence of amino acids in oxytocin, with a proposal
for the structure of oxytocin. J Biol Chem 1953; 205:949-57.



Functions of Oxytocin
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Functions of Oxytocin

OT exerts several central influences, from modulating
neuroendocrine reflexes to establishing the complex
social behaviors related to reproduction and the care
of offspring as well as learning and memory.

Feldman R, Weller A, Zagoory-Sharon O, Levine A. Evidence for a neuroen-docrinological foundation of human
affiliation: plasma oxytocin levels across pregnancy and the post partum period predict mother-infant bonding.
PsycholSci 2007;18:965-70.

Guastella AJ, Mitchell PB, Dadds MR. Oxytocin increases gaze to the eye regionof human faces. Biol Psychiatry
2008;63:3-5.

Insel TR, Young L, Wang Z. Central oxytocin and reproductive behaviours. RevReprod 1997;2:28-37.

Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E. Oxytocin increases trustin humans. Nature
2005;435:673—-6.

Ross HE, Young LJ. Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior.
Front Neuroendocrinol 2009;30:534-47.



Functions of Oxytocin

The physiological importance of OT in metabolic

homeostasis has also been reported.

Camerino C. Low sympathetic tone and obese phenotype in oxytocin-deficientmice. Obesity 2009;7:980-4.
Takayanagy Y, Kasahara Y, Onaka T, Takahashi N, Kawada T, Nishimori K.Oxytocin receptor-deficient mice
developed late-onset obesity. Neuroreport2008;19:951-5.

Zhang G, Cai D. Circadian intervention of obesity development via resting-stagefeeding manipulation or

oxytocin treatment. Am J Physiol Endocrinol Metab2011;301:E1004-12.
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Fig. | Body weight curves of Oxtr */* (n=13) and Oxtr I~ (h=17) male
mice. *P < 0.05; **P < 0.0l compared with Oxtr /™ littermate mice.

Takayanagy Y, Kasahara Y, Onaka T,
Takahashi N, Kawada T, Nishimori
K.Oxytocin receptor-deficient mice
developed late-onset obesity. Neuroreport
2008; 19:951-5.
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Fig. 2 Morphology of the white adipose tissue (WAT) and adiposity in
Oxtr™'* and Oxtr '~ male mice. (a) Weights of fat pads in 20 -week-old
Oxtr*'* (n=9) and Oxtr '~ (1=I8) male mice. (b) Histological sections
of epididymal fat pads from 20 -week-old Oxtr*/* and Oxtr '~ male mice.
The scale bar represents 60 um. (c) Adipocyte size in epididymal fat pads
from 20-week-old Oxtr*/* and Oxtr '~ male mice (=6 each). *P < 0.05;
*#P< 001, ***P <0.005 compared with Oxtr™/* littermate mice. BAT,
brown adipose tissue.
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Fig. 2 Morphology of the white adipose tissue (WAT) and adiposity in
Oxtr™'* and Oxtr '~ male mice. (a) Weights of fat pads in 20 -week-old
Oxtr*'* (n=9) and Oxtr '~ (1=I8) male mice. (b) Histological sections
of epididymal fat pads from 20 -week-old Oxtr*/* and Oxtr '~ male mice.
The scale bar represents 60 um. (c) Adipocyte size in epididymal fat pads
from 20-week-old Oxtr*/* and Oxtr '~ male mice (=6 each). *P < 0.05;
*#P< 001, ***P <0.005 compared with Oxtr™/* littermate mice. BAT,
brown adipose tissue.




Mice deficient in OT receptor develop late-
onset obesity despite normal food intake and

motor activity
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Fig. 3 Daily food intake (a) and spontaneous motor activity in the home cage (b) of littermate Oxtr.""""' (1=4-8) and Oxtr = (n
Circadian rhythms of food intake (c) and spontanecus motor activity (d) in 12-week-old littermate Oxtr */™ (n=4) and Oxtr '~ (n=4) male
bars indicate the light-off time.

Takayanagy Y, Kasahara Y, Onaka T, Takahashi N, Kawada T, Nishimori K. Oxytocin
receptor-deficient mice developed late-onset obesity. Neuroreport 2008;19:951-5.



Mice deficient in OT also increase the body

weight accompanied by a 40% increase in
abdominal fat pads
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Figure 1 Body weight and fat mass. Body weight curves of Oxt—/- (n = 10) and Oxt+/+ (n = 10) male and female mice. No
body weight difference between control and knockout mice until 2nd month of age has been observed. Differences in the
body weight between Oxt-/- and wild-type mice were observed at 3rd month of age. No differences between gender
were observed within Oxt-/- or Oxt+/+ mice. *Significantly different with respect to Oxt+/+ with P < 0.005 (a). Weight of
abdominal fat pad in 6 months old Oxt-/- and Oxt+/+ males and females mice. *Significantly different with respect to
Oxt+/+ with P < 0.05 (b).

Camerino C. Low sympathetic tone and obese phenotype in oxytocin-deficient mice.
Obesity 2009;7:980—4.



Mice deficient in OT develop obesity with

normal food intake and increase In leptin
levels
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Figure 2 Food intake and leptin plasma levels. Food intake per day in Oxt+/+ (n = 5) and Oxt-/- (n = 5) male mice (a). The
numbers indicate the four consecutive days of measurements. The histogram referred to a food measurement performed
at 4th month of age. However, the same results have been obtained at each time. Plasma leptin concentration in male
Oxt+/+ (n = 8) and Oxt-/- (n = 8) mice and in female Oxt+/+ (n = 5) and Oxt-/- (n = 5) mice at 6 months of age.
*Significantly different with respect to Oxt+/+ with P < 0.05 (c).

Camerino C. Low sympathetic tone and obese phenotype in oxytocin-deficient
mice. Obesity 2009;7:980—4.



Central OT infusion causes a lower body weight

gain in diet-induced obese rats.
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Figure 1. Central OT infusion causes body weight loss independently from changes in food intake. The measurements were
performed over a 14-day experimental period (weeks 5 through 7 of a high fat diet): (A) Cumulative body weight changes;
(B) cumulative food intake. Filled bars: i.c.v. saline—infused controls; open bars: i.c.v. OT-infused rats (1.6 nmol/d). Values
are mean 6 SEM of 6 to 7 rats/group. *P,0.05 compared to controls.

Deblon N, Veyrat-Durebex C, Bourgoin L, Caillon A, Bussier AL, Petrosino S, et al.
Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats.
PLoS ONE 2011;6(9):e25565.



OT modulates the peripheral

metabolism

Lipid Metabolism



The continuous ICV infusion of OT (1.6 nmol/day for 14 days) caused a
body weight loss independently of the changes in food intake and

induced an increase in the plasma glycerol levels, which was
accompanied by a decrease in the plasma triacylglycerol levels without
changes in the plasma insulin, leptin, and glucose levels

Saline-infused rats OT-infused rats
Glucose (mg/dl) 159.1+5.7 159.5+4.1
Insulin (ng/ml) 25507 1.7+0.3 . .
[— 130437 113495 Table. Effects of i.c.v. oxytocin
eptin (ng/m 9+3, 3+2, . .
Pt In9 (1.6 nmol/d) infusion on plasma
FFA (mmol/l) 0.82 =0.06 0.70*+0.06

glucose, insulin, leptin, FFA,
glycerol, TG, oleoylethanolamide
(OEA), palmitoylethanolamide

OEA (pmol/ml) 145+ 13 178+15 (PEA), anandamide (AEA) and 2-

PEA(nmol/ml) 1.34+0.16 1.63+0.15 arachidonoylglycerol (2-AG)
levels.

AEA (pmol/ml) 18+2.9 19+2.3

2-AG (pmol/ml) 78+13 53+4.9

Values are mean * SEM of 6-7 animals per group. * P<0.05 versus saline-
infused controls. P=NS for all other comparisons.
doi:10.1371/journal pone.0025565.t00 1

Deblon N, Veyrat-Durebex C, Bourgoin L, Caillon A, Bussier AL, Petrosino S, et al.
Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats.
PLoS ONE 2011;6(9):e25565.



The continuous ICV infusion of OT (1.6 nmol/day for 14 days) also

induced an increase in the expression and content of hormone-sensitive
lipase in adipose tissue, suggesting higher lipolytic activity in this tissue.
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Deblon N, Veyrat-Durebex C, Bourgoin L, Caillon A, Bussier AL, Petrosino S, et al.
Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats.
PLoS ONE 2011;6(9):e25565.



Central OT infusion induces hypothalamic OT

synthesis and release into the bloodstream

A B
c * — *

= 500 - P EED— I

bf

)

®F 400 | [ 2 2 - T
% O @2 20 -

8E 300 - o

23 3 15 -

"l-'“_ 4 h

5—;; 200 © 10 -

<< 100 - £ 5 | -

= W

@ - k.

£ 0 - — & 0 - .

Oxt
m i.c.v. saline-infused controls O i.c.v. OT-infused rats (1.6 nmol/d)

Figure 4. Central OT infusion induces hypothalamic OT synthesis and release into the bloodstream. The following
parameters were measured at the end of 14-day treatments with two doses of i.c.v. OT infusion: (A) Oxytocin
expression (Oxt) in rat hypothalamus; (B) plasma OT levels in saline—infused controls (filled bars) and OT-infused
rats (1.6 nmol/d, open bars). Values are mean 6 SEM of 6 to 7 rats/group. *P<0.05 compared to controls.

Deblon N, Veyrat-Durebex C, Bourgoin L, Caillon A, Bussier AL, Petrosino S, et al.
Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats.
PLoS ONE 2011;6(9):e25565.



Incubating epididymal adipose tissue with OT (10 nM for 4 h) increased

the glycerol content in the incubation medium.
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Deblon N, Veyrat-Durebex C, Bourgoin L, Caillon A, Bussier AL, Petrosino S, et al.
Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats.
PLoS ONE 2011;6(9):e25565.



A peripheral and continuous OT treatment (3.6 mg/100 g~! body weight

per day for 14 days) of Wistar rats fed with a commercial diet decreased
the diameter of the adipocytes without changing adipose tissue mass.
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In epididymal adipose tissue, oxytocin treatment
resulted in a significant increase in protein content
(oxytocin: 2.93 = 0.17 mg-g' vs. control: 2.44 =
0.098 mg-g'!, P < 0.05).

Eckertova M, Ondrejcakova M, Krskova K, Zorad S, Jezova D. Subchronic treat-
ment of rats with oxytocin results in improved adipocyte differentiation
andincreased gene expression of factors involved in adipogenesis. Br J
Pharmacol 2011;162:452-63.




OT treatment increased number of small adipocytes and the expression

of the PPAR-gamma gene, an important transcriptional factor involved in
adipogenesis, in epididimal adipose tissue.
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Eckertova M, Ondrejcakova M, Krskova K, Zorad S, Jezova D. Subchronic treat-
ment of rats with oxytocin results in improved adipocyte differentiation
andincreased gene expression of factors involved in adipogenesis. Br J
Pharmacol 2011;162:452-63.



Peroxisome proliferator activated receptor (PPAR)-alpha may mediate the body
weight gain control, because a peripheral administration of OT (50 nmol for 3

days) did not affect the body weight gain in PPAR-alpha knockout mice but did
decrease this parameter in wild-type mice.

A m s.c. saline—infused controls

o 1.2 ; — O s.c. OT-infused mice (50 nmol/d)

IE

&

2 0.8 -

f‘ Figure 7. PPAR-alpha mediates peripheral
= OT effects. (A) Cumulative body weight gain
'ﬁ 0.4 - after 3 days of s.c. saline or OT treatment in
S PPARalpha KO and wild-type (WT) mice.
= Values are mean + SEM of 5 animals/group.
3 *P < 0.05 compared to controls.

O 0.0-

WT PPAR-alpha KO

Deblon N, Veyrat-Durebex C, Bourgoin L, Caillon A, Bussier AL, Petrosino S, et al.
Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats.
PLoS ONE 2011;6(9):e25565.



The peripheral OT treatment of obese mice fed a high-fat diet induced a
decrease in the respiratory quotient, specifically during the light phase,

without significantly altering the energy expenditure or the locomotor activity,
suggesting that OT promotes the use of fat as an energy substrate.
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OT modulates the peripheral

metabolism

Glucose Metabolism



The presence of oxytocin in the incubation medium (1 mol/L for 20 min)

induced an increase in the rate of glucose 1-*C oxidation to CO, in
adipocytes .

A Dueto A Due to

Insulin A Dueto Oxytocin
Additions Basal | 10nmollL  EGF100nmoliL| 1 pmollk
Glucose-1-"*C oxi- ' o
dation to €o,| 20 #2.7+ 0.6* +05=+02 |[+08=02% 40%
(% conver-
sion)

NOTE. Rat adipocytes were incubated in albumin-free buffer for 10
minutes without or with 500 nmol/L wunmqnnin. The medium was
removed, and the cells were resuspended in 4% albumin (170,000/mL)
and then incubated for 20 minutes in the presence of the indicated
additions. Values are for 5 paired replications, and the effects of insulin,
EGF or oxytocin are shown as the mean + SEM of the paired differences.

*Significant effects of insulin, EGF, or oxytocin {P < .05). |

Fain JN, Gokmen-Polar Y, Bahouth SW. Wortmannin converts insulin but not
oxytocin from an antilipolytic to a lipolytic agent in the presence of forskolin.
Metabolism 1997;46:62—6.



OT was shown to stimulate the glucose oxidation and

lipogenesis in adipocytes
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Hanif K, Goren HJ, Hollenberg MD, Lederis K. Oxytocin action: mechanisms
forinsulin like activity in isolated rat adipocytes. Mol Pharmacol 1982;22:381-8.



Whether infused centrally or peripherally, chronic OT infusion improved

the insulin sensitivity of diet-induced obese rats .

)~
m

E 4 - 9 ¥
5= , 2E 4 -
2 £ 2 |
32, 3 g
3= cE 2 |
mm .; (b}
o o o (12 1 i .
ﬁ.ﬂ mE i" """ +l
3 7 0
0 15 30 60 120 0 15 30 60 120
Time (min) Time (min)

-4 7 weeks of HFD: i.c.v. saline—=infused controls
—0— 7 weeks of HFD; i.c.v. OT-infused rats (1.6 nmol/d)
-4 3 weeks of HFD

Figure. Central OT infusion protects against high fat diet-induced insulin resistance. I.c.v. saline- (black circles) or OT- (1.6 nmol/d; white diamonds) infused rats
received: glucose tolerance tests (1.5 g/kg) before (black triangles, dashed line; 3 weeks of HFD; n = 16 rats) or after infusions (7 weeks of HFD; 14-day i.c.v.
infusions; n = 6 for each treatment group): (A) delta glucose and (B) delta insulin; One-way ANOVA: *P<0.05 compared to black triangles; {P,0.05 compared to
black circles.

Deblon N, Veyrat-Durebex C, Bourgoin L, Caillon A, Bussier AL, Petrosino S, et al. Mechanisms of
the anti-obesity effects of oxytocin in diet-induced obese rats. PLoS ONE 2011;6(9):e25565.



Mice deficient in OT have an insulin-resistant state and a lower

capability to counteract the glycemia increase following a
glucose bolus
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Figure. Glucose metabolism. Insulin tolerance test (ITT) (a). Representative plots of glucose disposal curves for
each experimental condition. (b). Representative plots of glucose disposal curves for each experimental
condition. The data are the mean * ES of blood glucose values from three wild-type and three Oxt—/— mice
normalized on the starting glucose values at time 0 for each mice. *Significantly different with respect to Oxt+/+
with P < 0.05.

Camerino C. Low sympathetic tone and obese phenotype in oxytocin-deficient
mice. Obesity 2009;7:980—4.



Peripheral OT increased the GLUT-4 (an insulin-dependent glucose

transporter) expression in the epididymal adipose tissue .

0,35 - *
0,30 - T
=
C 0,25 -
E
T
o 020 4
o
L=
E’ 0,15
o
=
S 0,10 1
(V]
0,05 -
0,00

control oxytocin

Eckertova M, Ondrejcakova M, Krskova K, Zorad S, Jezova D. Subchronic treat-
ment of rats with oxytocin results in improved adipocyte differentiation
andincreased gene expression of factors involved in adipogenesis. Br J
Pharmacol 2011;162:452-63.



OT directly stimulated the insulin release from mice islets via

phosphoinositide turnover and protein kinase C activation
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Effects of various concentrations of OT on release of insulin from mouse islets.

Gao 2Y, Drews G, Henquin JC. Mechanism of the stimulation of insulin release by
oxytocin in normal mouse islets. Biochem J 1991;276:169-74.



However, the continuous ICV administration of OT to high-fat

diet-fed rats did not affect the plasma levels of insulin

Saline-infused rats OT-infused rats

Glucose (mg/dl) 159.1+5.7 159.5+4.1

—> Insulin (ng/ml) 23+07 17203 €— Table. Effects of i.c.v. oxytocin
Leptin (ng/ml) LELS T L (1.6 nmol/d) infusion on plasma
FFA (mmol/l) 0.82+0.06 0.70+0.06 glucose, insulin, Ieptin, FFA,
Glycerol (ug/ml)  506+5.1 636+32 * glycerol, TG, oleoylethanolamide
TG (mmol/l) 1.11+0.09 0.80+0.05 * (OEA), palmitoylethanolamide
OEA (pmol/ml) 145+13 178+15 (PEA), anandamide (AEA) and 2-
PEA(nmol/ml) 134+0.16 1.63+0.15 arachidonoylglycerol (2-AG)
AEA (pmol/ml) 18+29 19+2.3 levels.
2-AG (pmol/ml) 78+13 53+4.9

Values are mean * SEM of 6-7 animals per group. * P<20.05 versus saline-
infused controls. P=NS for all other comparisons.
doi:10.1371/journal.pone.0025565.t001

Deblon N, Veyrat-Durebex C, Bourgoin L, Caillon A, Bussier AL, Petrosino S, et al.
Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats.
PLoS ONE 2011;6(9):e25565.
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Summary of the metabolic
effects of oxytocin. Upon chronic
\ central (i.c.v.) or peripheral (s.c.)
diifsousiiissus infusion into diet-induced obese
> rats, oxytocin (OT) increases
triglyceride (TG) uptake, lipolysis,
and fatty acid b-oxidation in
adipose tissue. OT activates
stearoyl-Coenzyme A desaturase 1
(Scd1) to produce the

| body weight

T glucose tolerance

T insulin sensitivity

Glucose

Acetyl Coa
MalonylCoa

| plasmaTG

endocannabinoid

oleoylethanolamide @ (OEA), a
known ligand of PPAR-alpha. The
action of OT on fatty acid b-
oxidation is thus exerted by direct
activation of PPAR-alpha target

S genes via the production of OEA.
o Red arrows indicate the direction

(up or down) of regulation.
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