

IPARATIVE AIR QUALITY OF PETROLEUM DEPOTS AND REFUELLING STATIONS MOSPHERIC ENVIRONMENTS IN NIGERIA

## PRESENTED BY

## UDUAK ONOFIOK LUKE

# BIOCHEMISTRY DEPARTMENT FACULTY OF BASIC MEDICAL SCIENCES UNIVERSITY OF CALABAR CALABAR - NIGERIA

E-mail: uduakluke@gmail.com& mericlywill@yahoo.com

# **INTRODUCTION:**

 Petroleum and petroleum products (including diesel, gasoline and kerosene) are known to be very useful in domestic and industrial activities.

 Gasoline and kerosene are known to be very volatile, and release some toxic chemical substances into the environment.

• These chemical substances constitute chemical contaminants in the atmospheric air.

Introduction cont' d

 The chemical constituents of petroleum products that contaminate the air on their release are mainly the hydrocarbons.

 Most of these hydrocarbons, including benzene, are known to pose adverse effects to the environments

 Hence, the use of petroleum products, either in automobiles and industrial operations, or domestic activities has been reported to pose adverse effects to quality of the air (Guarieiro,2013)

#### Introduction cont' d

• Particularly, a high level of benzene in the breathing zone of fuel service station during refueling of automobiles has been reported (Tatrai et al, 1981).

• Exposure to toxic substances, which constitute pollutants in the environment, has been a major concern in recent times.

 Exposures to toxic environmental pollutants are known to cause several hazardous conditions and health challenges to both animals and humans (Briggs, 2003; Ajugwo, 2013)

#### Introduction Cont' d

Duarte-Davidson et al, 2001 reported that during refueling, the content of benzene in petrol (about 2%) is dependent on petrol station exposure, time spent at the petrol station and availability of vapour control devices.

According to Tatrai *et al*, 1981, levels of benzene around the breathing zone are on significant increase in refueling stations, petroleum product depot and flaring sites which apparently humans inhale in the process of refuelling.

#### Introduction Cont' d

 Modifications of genetic compositions with consequential environmental and health consequences are among the hazardous conditions associated with exposure to environmental pollutants (Grether, 2005).

 Hence this study assessed the comparative air quality of petroleum depots and petroleum products refueling stations and gas flaring sites in Nigeria.

## MATERIALS AND METHODS:

 Air quality measurement assay was carried out at ten NNPC depots, twenty refuelling stations, storage facilities and gas flaring sites via the Gaussian approach across the Niger- Delta regions of Nigeria

 using instrumental methods -aeroqual air quality kit (aeroqual environmental monitor series 300) by Aeroqual limited.  The determination of the prevailing meteorological parameters such as noise levels, relative humidity, wind speed, wind direction (south-westerly wind), and temperature using pre- calibrated Envirotech meters.

#### Materials and Methods Cont'd

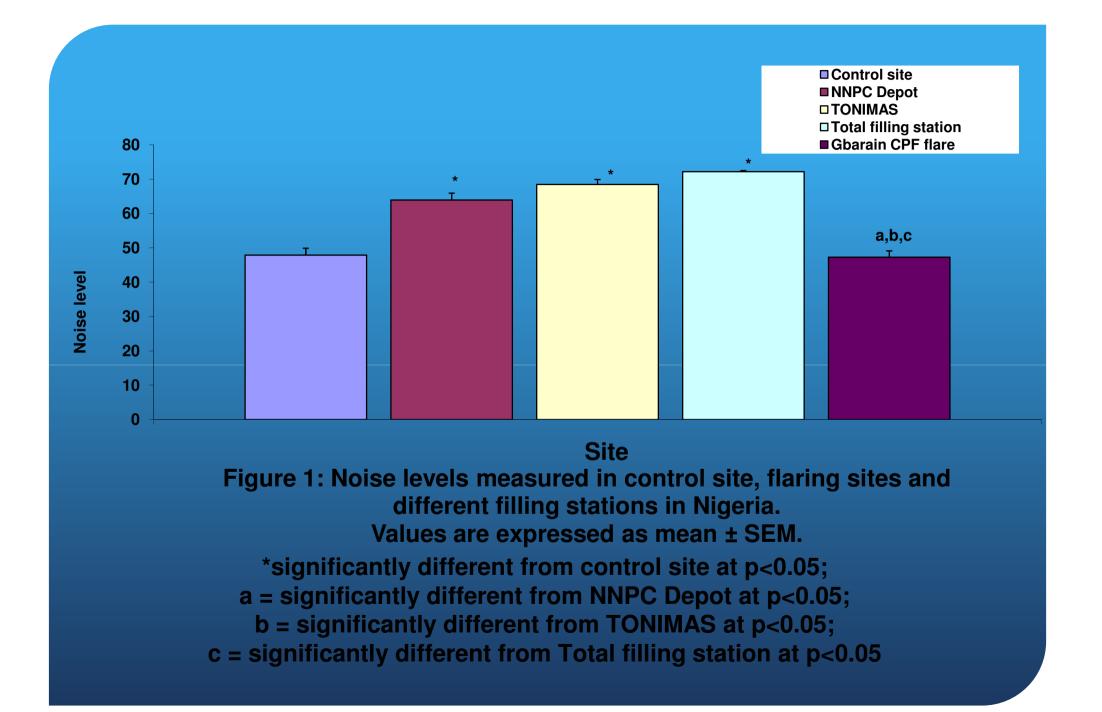
After the initialization of the equipment, the following parameters were measured with time, prevailing wind (south westerly wind) and weather conditions (a cloudy and partially sunny day) such as: Noise level, Temperature, Relative humidity, Wind speed.

The noise level was measured using Extech instrument (407730) sound level meter. The Extech meteorological meter (45170, CPILU China) was used to measure wind-speed, temperature and humidity.

# Nigerian Ambient Air Quality

| Pollutants                         | Time of Average                                 | Limit                               |
|------------------------------------|-------------------------------------------------|-------------------------------------|
|                                    |                                                 |                                     |
|                                    |                                                 |                                     |
| Particulates                       | Daily average of hourly values Hourly value     | $250\mu g/m^3$                      |
|                                    |                                                 | 600*μg/m <sup>3</sup>               |
| SO <sub>x</sub> as SO <sub>2</sub> | Daily average of hourly values Hourly value     | 0.01ppm (26µg/m³) 0.1ppm (260µg/m³) |
| NO <sub>x</sub> as NO <sub>2</sub> | Daily average of hourly values (range)          | 0.04 – 0.06ppm (75-113μg/m³)        |
| Carbon Monoxide                    | Daily average of hourly values 8 - hourly range | 10ppm (11.4mg/m³) 20ppm (22.8mg/m³) |
| Petrochemical Oxidants             | Hourly value                                    | 0.66ppm                             |
| Non-Methane Hydrocarbon            | Daily average of 3-hourly values                | 160μg/m <sup>3</sup>                |

# **WHO Air Quality Guidelines**


| Pollutants                     | Time-Weighted Average <sup>a</sup> | Averaging time |  |
|--------------------------------|------------------------------------|----------------|--|
|                                |                                    |                |  |
| SO <sub>2</sub>                | 500                                | 10min          |  |
|                                | 300                                | 1h             |  |
|                                | 100 - 150 <sup>b</sup>             | 24h            |  |
|                                | 40 - 60 <sup>b</sup>               | 1yr            |  |
| СО                             | 30                                 | 1h             |  |
|                                | 10                                 | 8h             |  |
| NO <sub>2</sub>                | 400                                | 1h             |  |
|                                | 150                                | 24h            |  |
| O <sub>3</sub>                 | 150 - 200                          | 1h             |  |
|                                | 100 - 120                          | 8h             |  |
| Black smoke                    | 100 - 150                          | 24hr           |  |
|                                | 40 - 60 <sup>b</sup>               | 1yr            |  |
| Total suspended particulates   | 150 - 230 <sup>b</sup>             | 24hr           |  |
|                                | _60 - 90 <sup>b</sup>              | 1yr            |  |
| Thoracic particles $(PM_{10})$ | 70 <sup>b</sup>                    | 24hr           |  |
|                                |                                    |                |  |
| Pb                             | 0.5 – 1                            | 1yr            |  |
|                                |                                    |                |  |

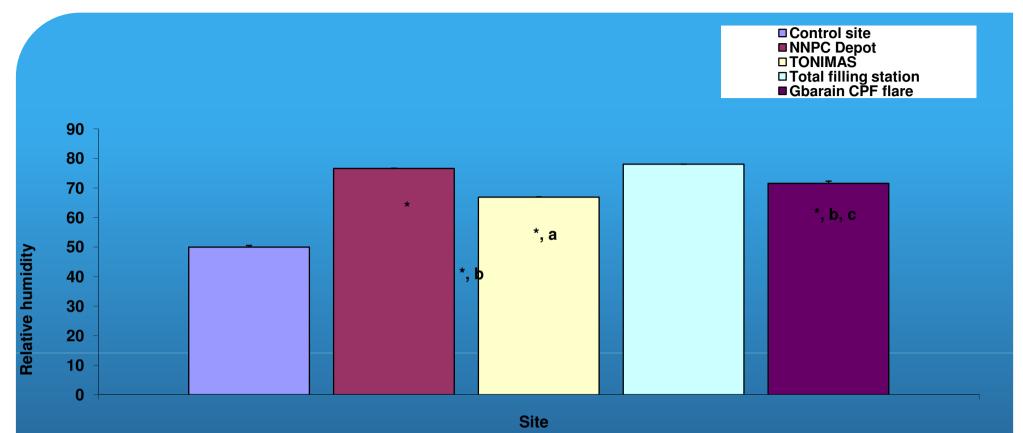
<sup>a</sup>All concentrations in µgm<sup>-3</sup> except CO in mgm<sup>-3</sup> <sup>b</sup>Guideline values for combined exposure to SO<sub>2</sub> and suspended particulate matter (they may not apply to situations where only one of the components is present)

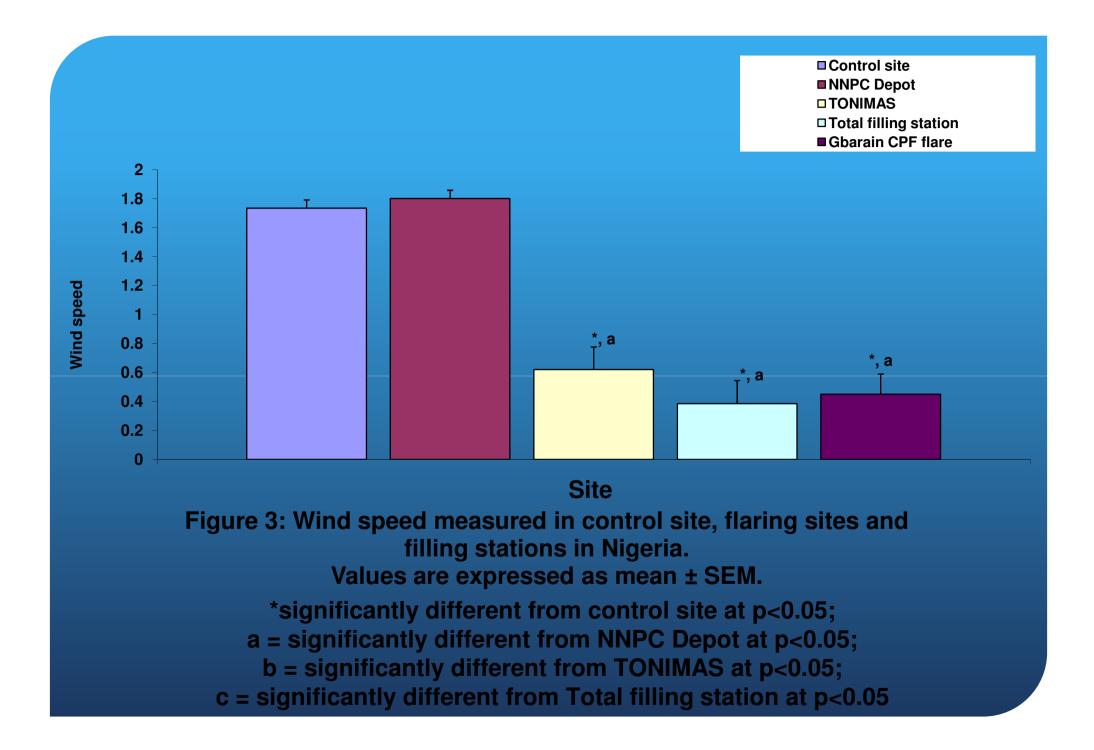
# US National Ambient Air Quality Standards (NAAQS

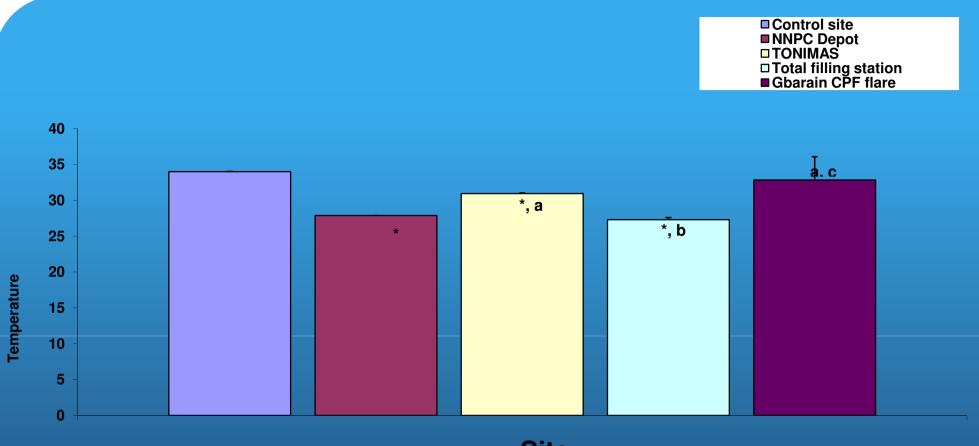
| Pollutants      | Average Time       | Primary Standard <sup>a</sup>  |
|-----------------|--------------------|--------------------------------|
|                 |                    |                                |
| SO <sub>2</sub> | 3h                 | -                              |
| -               | 24h                | 365µgm <sup>-3</sup> (0.14ppm) |
|                 | Annual average     | 80µgm <sup>-3</sup>            |
|                 |                    |                                |
| NO <sub>2</sub> | Annual average     | 100µgm <sup>-3</sup> (0.05ppm) |
|                 |                    |                                |
|                 |                    |                                |
| NO              | 1h                 | 40mgm <sup>-3</sup> (35ppm)    |
|                 | 8h                 | 10mgm <sup>-3</sup> (9ppm)     |
| O <sub>3</sub>  | 1h                 | 235µgm <sup>-3</sup> (0.12ppm) |
| <u> </u>        |                    |                                |
|                 |                    |                                |
| Black smoke     | 100-150            | 24hr                           |
|                 | 40-60 <sup>b</sup> | 1yr                            |
|                 |                    |                                |
| $PM_{10}$       | 24h                | 150µgm <sup>-3</sup>           |
| (d≤10µm)        | Annual average     | 50µgm <sup>-3</sup>            |
| Pb              | 3months            | 1.5µgm <sup>-3</sup>           |
| 10              | 51101115           | 1.5µgm                         |
|                 |                    |                                |
|                 |                    |                                |









Figure 2: Relative humidity measured in control site, flaring sites and different filling stations in Nigeria.


Values are expressed as mean ± SEM.

\*significantly different from control site at p<0.05;

a = significantly different from NNPC Depot at p<0.05;

**b** = significantly different from TONIMAS at p<0.05;





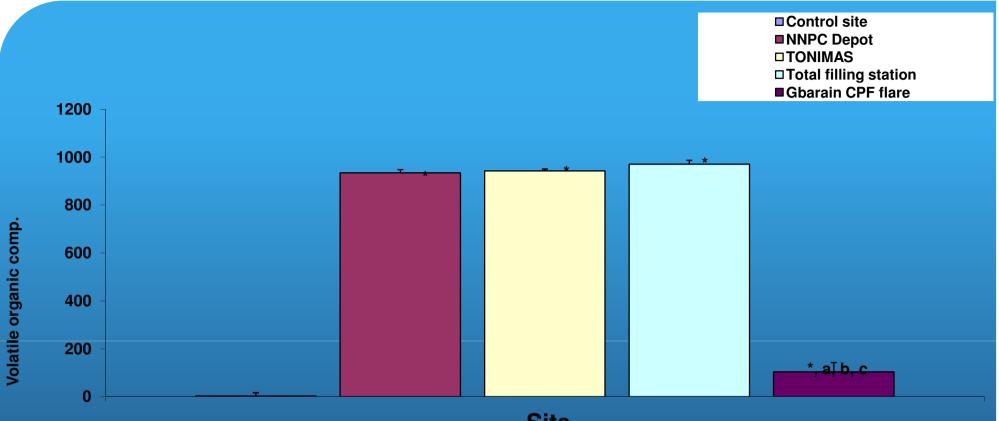
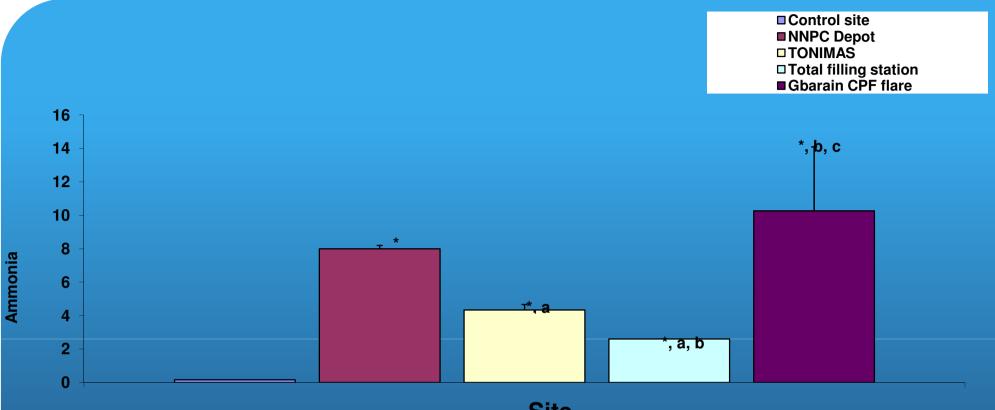

Site

Figure 4: Temperature measured in control site, flaring sites and different filling stations in Nigeria. Values are expressed as mean ± SEM.

\*significantly different from control site at p<0.05;

a = significantly different from NNPC Depot at p<0.05;

**b** = significantly different from TONIMAS at p<0.05;




Site

Figure 5: Concentrations of Volatile organic compounds measured in control site, flaring sites and different filling stations in Nigeria. Values are expressed as mean ± SEM.

significantly different from control site at p<0.05;</p>

- a = significantly different from NNPC Depot at p<0.05;
  - **b** = significantly different from TONIMAS at p<0.05;



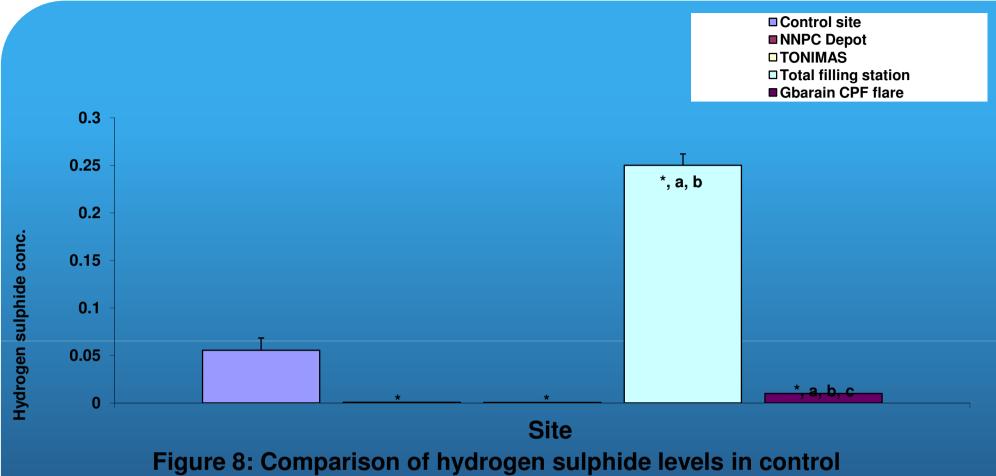
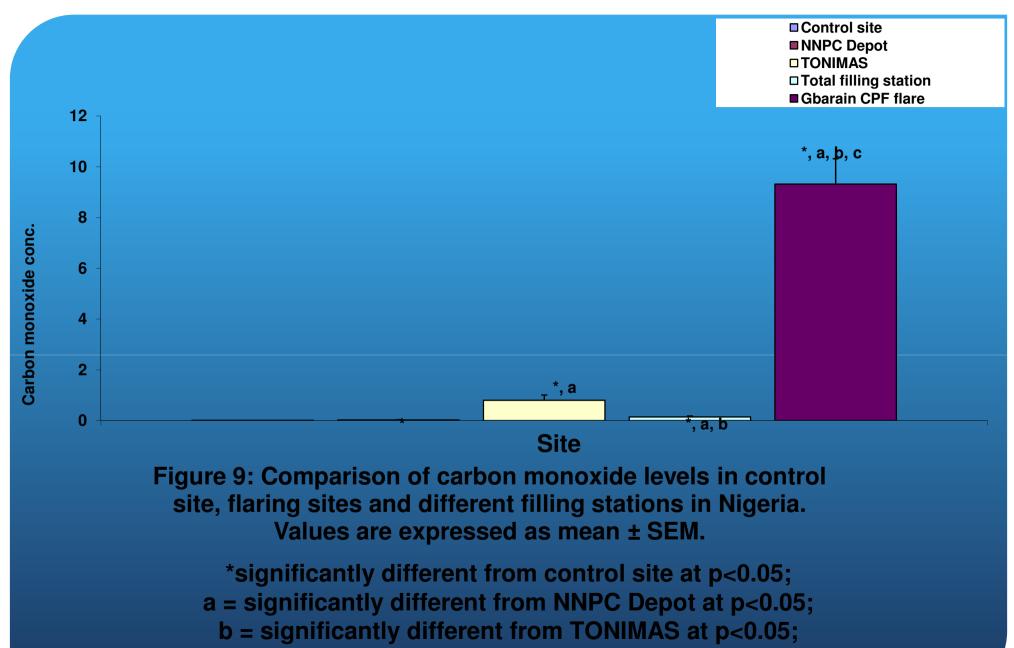
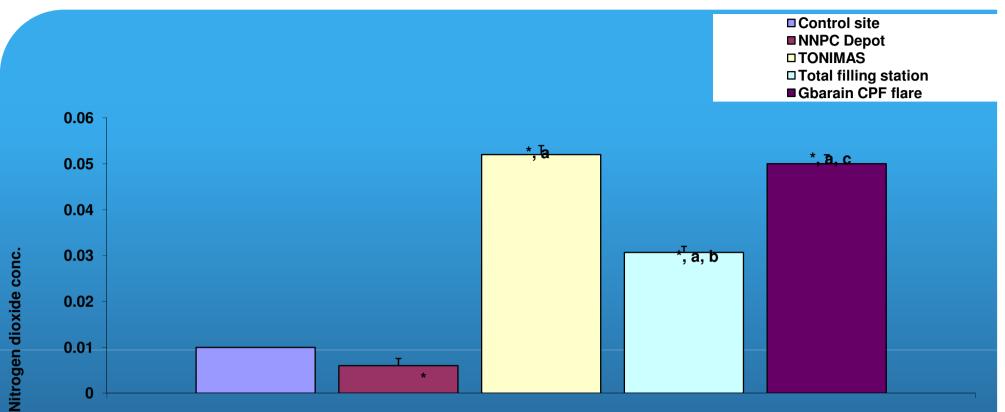

Site

Figure 6: Levels of ammonia measured in control site, flaring sites and different filling stations in Nigeria. Values are expressed as mean ± SEM.

\*significantly different from control site at p<0.05;

- a = significantly different from NNPC Depot at p<0.05;
  - **b** = significantly different from TONIMAS at p<0.05;



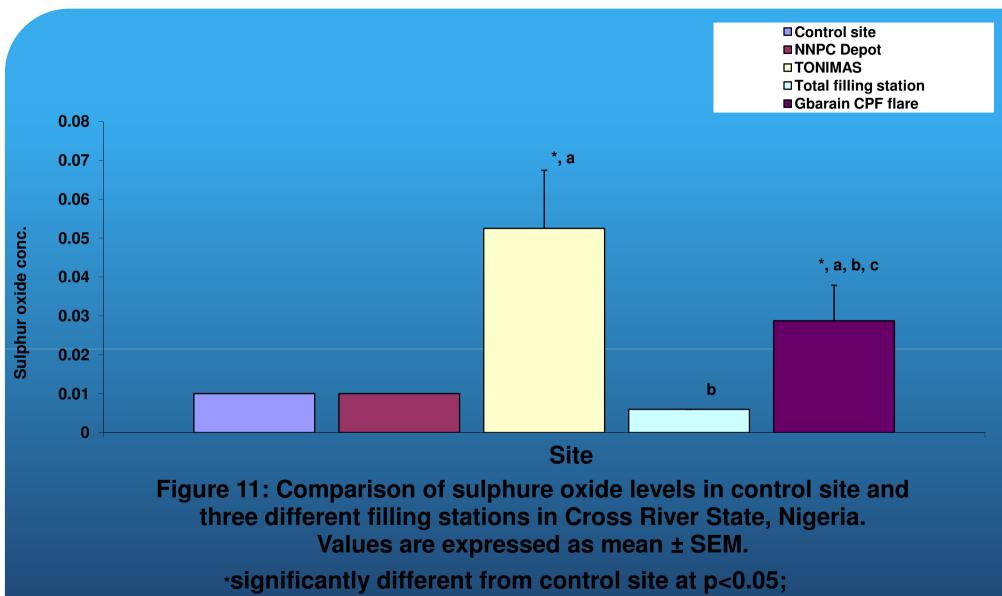




site, flaring sites and different filling stations in Nigeria. Values are expressed as mean ± SEM.

\*significantly different from control site at p<0.05;

- a = significantly different from NNPC Depot at p<0.05;
  - **b** = significantly different from TONIMAS at p<0.05;






Site

Figure 10: Comparison of Nitrogen dioxide levels in three different filling stations in Cross River State, Nigeria. Values are expressed as mean ± SEM.

\*significantly different from control site at p<0.05;

- a = significantly different from NNPC Depot at p<0.05;
- **b** = significantly different from TONIMAS at p<0.05;



- a = significantly different from NNPC Depot at p<0.05;
  - **b** = significantly different from TONIMAS at p<0.05;

The results showed a significant increase in ammonia, methane, hydrogen sulphide, carbon monoxide, nitrogen oxide and sulphur VI oxide levels recorded at the refueling stations and storage depot, compared with the levels recorded for remote rural areas.

• The levels of these indices were significantly higher compared to the control sites but most of the indices were not significantly higher than the environmental standard permissible limits.

 It may therefore be concluded that petroleum depots, flaring sites and refueling stations atmospheric environments harbor chemical substances that can contaminate the air quality, and constitute environmental pollution in these areas over an extended period of time.

# THANK YOU

## **REFERENCES:**

 Briggs, D.Environmental pollution and the global burden of disease; British Medical Bulletin 2003; 68: 1-24

 Guarieiro, L.L.N & Guarieiro, A. L.N (2013)
Vehicle Emissions: What Will Change with Use of Biofuel? <u>http://dx.doi.org/10.5772/52513</u>

 Ajugwo, Anslem O.. "Negative Effects of Gas Flaring: The Nigerian Experience." Journal of Environment Pollution and Human Health 1.1 (2013): 6-8.

#### References Cont' d

Zahlsen, K., Nielson, A. M., Eide, I. and Nielson, O. G. (1993). Inhalation kinetics of  $C_8$ - $C_{10}$ , 1-alkenes and isoalkanes in rats after repeated exposure. *Pharmacology Toxicology*, 73, 163-168.

Nwanjo, H. U., Oze, G., Okafor, M. C., Nwosu, D. & Nwankpa, P. (2007). Protective role of *Phyllanthus niruri* extract on serum lipids profile and oxidative stress in hepatocytes of diabetic rats. *African Journal of Biotechnology*, 6(12), 1744-1749.

#### References Cont'd

Fritsche, W. & Hofrichter, M. (2000). Aerobic degradation by microorganisms, " in Environmental Processes- Soil Decontamination. Wiley-VCH, Weinheim, Germany. Journal Klein, Education, 146-155.

• Duarte-Davidson, R., Courage, C., Rushton, L. & Levy, L (2001). Benzene in the environment: an assessment of the potential risks to the health of the population; *Occupational Environmental Medicine*, 58(1), 2-13.