Emerging Technologies for Multimedia Networks

Tsang-Ling Sheu, Professor

Dept. of Electrical Engineering National Sun Yat-Sen University Kaohsiung, Taiwan

# Outline

- Communications and Technologies
- Video Standards
- Multimedia Networks
- Quality of Services (QoS)
- Technical Challenges
- Researches

# **Communications and Technologies**

- Wired:
  - Transmission Line Loss, Echo, Delay, Insertion Loss, Impedance Matching, Crosstalk, Return Loss, Clock Sync.
- Wireless:
  - Signal Bandwidth vs Noise/Interference
  - Antenna Gain
  - Congestion
  - Modulation and Multiplexing
- Multimedia Networks:
  - Video/Audio over RTP/UDP/IP, SCTP/IP, TCP/IP

### Wired Digital Transmission Highlights

| Digital | Optical       | Electrical    | Line       | Effective   | # DS0s in | <b>#DS1s in</b> | #DS3s      | Others | SDH           |
|---------|---------------|---------------|------------|-------------|-----------|-----------------|------------|--------|---------------|
| Signal  | Transmit      | Transmit      | Bit Rate   | Data Rate   | Payload   | Payload         | in Payload |        | Level         |
| DS-0    |               | E0 /J0        | 64 Kbps    | 64 Kbps     | 1         |                 |            |        |               |
| DS-1    |               | T1 /J1        | 1.544 Mbps | s 1.536 Mbp | s 24      | 1               |            |        |               |
|         |               | <b>E1</b>     | 2.048      |             | 32        |                 |            |        |               |
| DS-2    |               | T2            | 6.312      |             | 96        | 4               |            |        |               |
|         |               | E2            | 8.448      |             | 128       |                 |            |        |               |
|         |               | E3            | 34.368     |             | 512       |                 |            |        |               |
| DS-3    |               | T3            | 44.736     |             | 672       | 28              | 1          |        |               |
|         | <b>OC-1</b>   | STS-1         | 51.84      | 50          | 672       | 28              | 1          |        |               |
|         |               | <b>E4</b>     | 139.264    |             | 2048      |                 |            |        |               |
|         | OC-3          | STS-3         | 155.52     | 150         | 2016      | 84              | 3          |        | STM-1         |
| DS-4    |               |               | 274.176    |             | 4032      | 168             | 6          |        |               |
|         | <b>OC-9</b>   | STS-9         | 466.56     | 451         | 6048      | 252             | 9          |        | STM-3         |
|         | OC-12         | <b>STS-12</b> | 622.08     | 601         | 8064      | 336             | 12         | 4 OC-3 | STM-4         |
|         | <b>OC-24</b>  | <b>STS-24</b> | 1.244 Gbps | 1.20 Gbps   | 16128     | 672             | 24         |        | STM-8         |
|         | OC-96         | STS-96        | 4.976      | 4.81        | 64512     | 2688            | 96         |        | <b>STM-32</b> |
|         | OC-256        |               | 13.271     |             | 172032    | 7168            | 256        |        |               |
|         | <b>OC-768</b> |               | 39.813     |             | 516096    |                 |            |        |               |

# Wireless: Modulation and Multiplexing

• Modulation

Frequency-Modulated Signals, Amplitude-Modulated Signals Phase/Angle-Modulated Signals, Phase/Amplitude Modulated Pulse Duration Modulated, Pulse Code Modulation

• Multiplexing

Frequency Division Multiplex (FDM)

Time-Division Multiplex (TDM)

Space-Division Multiplex (SDM)

Wave-Division Multiplex (WDM)

Orthogonal-Frequency Division Multiplex (OFDM)

### TDMA/OFDM/OFDMA



. .

6

# Population penetration of mobile vs fixed across Asia-Pacific



### **Access Service Stack**



### **Evolution of Wireless Access Technologies**



### **Standard Evolution for Wireless Access**





# 4G: IEEE 802.16m and LTE-A

- ITU-R's IMT-Advanced (4G) requirements
  - o up to 1 Gbps in static or low mobility environment
  - o up to 100 Mbps in high-speed mobile environment
- Multicarrier is the technology to utilize wider bandwidth for parallel data transmission across multiple RF carriers.
  - o IEEE 802.16m
  - o LTE-A
    - Carrier Aggregation (CA)
    - Component Carrier (CC)

### **LTE-A Frame Structure**



One RE = One symbol x one sub-carrier One RB = 7 symbols x N sun-carriers

# Interactive Multimedia Display System

- A Bi-Directional Interactive Communication System
- Image Plans and Video Graphic Mode
- Texts and Graphics Mixed Mode
- Video Graphics and Texts Display Processors in A Digital Format
- Information Retrieval Between Video Display Terminal and Terminal
- Information Retrieval Between Video Display Terminal and Database (Information Provider)

### Worldwide Video Standards

|                         | NTSC           | PAL          | SECAM              |
|-------------------------|----------------|--------------|--------------------|
| Line / Field            | 525 / 60       | 625 / 50     | 819 / 50 "E" Mono  |
|                         |                |              | 625 / 50 "L" Color |
| H. Frequency            | 15.734 KHz     | 15.625 KHz   | 20.745 KHz "E"     |
|                         |                |              | 15.625 KHZ "L"     |
| V. Frequency            | 59.94 Hz       | 50 Hz        | 50 Hz "E" & "L"    |
| <b>Color Subcarrier</b> | 3.579545 MHz   | 4.433618 MHz | 4.40625 MHz OR     |
|                         |                |              | 4.25000 MHz OB     |
| Sound Carrier           | 4.5 MHz (FM)   | 6.0 MHz (FM) | 6.5 MHz (AM) "L"   |
| Video Bandwidth (Y)     | <b>4.2 MHZ</b> | 5.5 MHz      | 10 MHz "E"         |
|                         |                |              | 6.0 MHz "L"        |
| Video Component         | R G B Or       | R G B Or     | R G B Or           |
| -                       | Y I Q or       | YUV          | YUV                |
|                         | Y B-Y R-Y      |              |                    |
| Interlaced              | 2:1            | 2:1          | 2:1                |
| Frames / Second         | 30             | 25           | 25                 |
| Aspect Ratio            | 4:3            | 4:3          | 4:3                |

### HDTV Standards

|                                              | Japan                | USA                          | Europe    |
|----------------------------------------------|----------------------|------------------------------|-----------|
| Line / Field                                 | 1125 / 60            | 1050 / 59.94                 | 1152 / 50 |
| H. Frequency<br>V. Frequency                 | 33.7495 KHz<br>60 Hz | 31.468 KHz<br>59.94 Hz 50 Hz | 31.25 KHz |
| Video Bandwidth (Y)                          | 30 MHz               | <b>40 MHz</b>                |           |
| Chrominance BW (B-Y)<br>Chrominance BW (R-Y) | 15 MHz<br>15 MHz     | 20 MHz<br>20 MHz             |           |
| Interlaced<br>Frames / Second                | 2:1<br>30            | 2:1<br>30                    | 2:1<br>25 |
| Aspect Kallo                                 | 10:9                 | 10:9                         | 10:9      |

### Video Compression Techniques

| Type Compression (CODEC) | Rate                                   | Formats                                  | Application                                                                               |
|--------------------------|----------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------|
| H.261                    | p x 64Kbit/s (p is in the range 1-30). | QCIF, CIF                                | PSTN, PSDN                                                                                |
| Н.263                    | 20-30kbps and above                    | QCIF, CIF<br>SQCIF, 4CIF<br>16CIF. SQCIF | PSTN, PSDN, Video<br>Conferencing, Video<br>Telephony                                     |
| H.264                    | Less than 1 Mb/s                       | MPEG-4 AVC                               | Internet Protocol-<br>based broadcast-<br>quality video                                   |
| MPEG 2<br>IS-13818       | 4 Mbps or higher                       | Progressive coding                       | broadcast quality<br>video                                                                |
| MPEG4<br>'ISO/IEC 14496' | Less than 1.15Mb/s                     | MPEG-4                                   | Digital television,<br>Interactive graphics<br>applications,<br>Interactive<br>multimedia |

### **Circuit-Switched Network**

- Characteristics Constant Bit Rate; Full Bandwidth After Call Setup; Low Latency, Constant Delay; Incremental Bandwidth Available (Add B Channels)
- Protocols ISDN, Robbed Bit Signaling
- Medium T1 / Fractional T1, DDS at 56 kbps Lines
- Addressing Schemes Use Phone Numbers; Statically Assigned; Public Directory Assistance if Unknown
- ♦ H.320 Terminals
- Intended for Voice Transmission
- Data Transmission Using Modems
- High Quality connections Low Delay, High Reliability, full Duplex 56 / 64 Kbps Channels
- Basis for Toll Quality

### Packet-Switched Network

- Characteristics Burst Mode; Variable Bit Rate; Variable Latency and Variable Delay; Non-Guaranteed Quality of Services in Current Network Topologies; Incremental Bandwidth Quickly Becoming More Available
- Protocols TCP/IP, ICMP (Internet Control Message Protocol), DHCP (Dynamic Host Configuration Protocol)
- Wired Internet MAC layer: Ethernet, Frame Relay, ATM, MPLS, and TCP/IP Transport layer
- Addressing Schemes IP Address; Static or Dynamic Assignment; Directory Servers - Maintain User IP Address by Name or Alias; IP Address Can Change Depending on Your Location (Mobile IP)

# Multimedia Networks

The Adoption and Implementation of Digital Contents over IP Can be justified by the Following:

- Increasing Voice/Data/Video Convergence
- IP is Now the "Common Protocol"; RSVP Protocol for Bandwidth Reservation and RTP Protocol for Detecting Missing Packets to Improve Quality of Services
- Packetized Compressed Voice Has Shown Cost-Effective Solutions (High-Class Coding Algorithms)
- Intranets and Extranets are Growing Rapidly
- Voice over IP (VoIP) is Being Successfully Deployed in Major Corporate Network
- The Rapid Growth of Digital Multimedia Contents in Internet

## **VoIP Network Topology**



Equipment to Bridge the Circuit-Switched Network and Packet-Switched Network

### MoIP Network Topology



### MoIP Network Topology



Major Entities in an H.32X Environment: H.323 Terminals, Gateways, Gatekeepers and MCUs.

## Major System Components

Terminals

- Bi-Directional Real-Time Communication for the User
- Enable Voice Connections, Video and Data Communication are Optional
- Supporting H.245 for Describing the Negotiation of the Appropriate or Required Terminal Functionality

Gateways

- Translate Between Physical Media, Network Protocols, Conferencing Protocols and Addressing
- Translate Between Different Audio or Video Codes in Real Time, Allow H.320 Endpoints to Use T.120 Conferencing Effectively
- Support Voice Over IP and Multimedia Conferencing

# Major System Components (Continued)

- Locate at Multimedia Conference Servers, Stand-Alone Equipment, Network Servers, Routers, Remote Access Servers, Multimedia PBX, Network Services Authorization and Authentication
- Serve Conferences Interoperability Between H.320 and H.323 Endpoints Complying With Different ITU Standards, Diverse Network Transport, Diverse Audio or Video Codecs
- Connect Incompatible Devices by Device Emulation at the Network Level; a Good Gateway is Invisible Just Like the Gateway Embedded in the Telephone Network
- A media gateway provides translation of protocols for call setup and release, conversion of media formats between different networks:
- Transfer of information between H.323 and SIP networks on an IP Network
- Translation between transmission formats and communication signals and procedures (e.g. between IP and PSTN)
- Passes call signaling not applicable to the media gateway through to the network endpoint (e.g. supplemental services such as call forwarding)
- Performs call setup and clearing on both sides
- Translates between encoding formats

# Major System Components (Continued)

Gatekeepers

- An Optional Element of H.323
- Link Endpoints Directly to Gatekeepers
- Reside Anywhere in H.323 Network Entities or Run as Server Application
- Do Bandwidth and Resource Management, Access Control, Endpoint Registration, Zone Definition, Enhanced Call Control and Address Translation
- Platform Independent
- An Embedded Component in Hardware Building Block
- Gatekeeper "Engine" Software Development Application

# Major System Components (Continued)

Multipoint Control Units

- Provide Audio Bridge With Value-Added Video Multipoint Capabilities, Unattended Operation, Full Audio Mixing With Advanced Techniques for High Quality Compressed Speech
- Support Multicast and Unicast Sessions

# H.323, SIP, MGCP, H.248

#### • H.323

- IP communications protocol for real-time voice and video over IP.
- Includes core protocol and gatekeeper toolkits.
- International Telecommunications Union (ITU) recommendation for audio, video, and data communications across IP-based networks.

#### • SIP (Session Initiation Protocol)

- Signaling protocol for establishing real-time calls and conferences over IP networks.
- SIP is an IETF (Internet Engineering Task Force) Protocol.

#### • MGCP (Media Gateway Control Protocol)

- A complementary IETF protocol to H.323 and SIP
- Defines the communication procedures for a Media Gateway Controller to provide instructions and to gather information from Media Gateways
- Megaco/H.248 (Media Gateway Control)
  - Similar to MGCP, jointly defined by the IETF and ITU-T SG-16
  - Gradually replacing MGCP
  - Megaco renamed GCP (Gateway Control Protocol) -- RFC 3525

# **RTP / RTCP**

#### **Real-Time Transport Protocol (RTP)**

- Provides end-to-end delivery services of real-time Audio (G.711, G.723.1, G.728, etc.) and Video (H.261, H.263),
- Data is transported via the user datagram protocol (UDP).
- RTP provides payload-type identification, sequence numbering, time stamping, and delivery monitoring.
- UDP provides multiplexing and checksum services.
- RTP can be used with other transport protocols.

### **Real-Time Transport Control Protocol (RTCP)**

- Counterpart of RTP that provides control services
- Primary function of RTCP is to provide feedback on the quality of the data distribution RTCP-XR
- Carries transport-level identifier for an RTP source
  - Used by receivers to synchronize audio and video.

# Quality of Services (QoS)

#### **Technical Constraints**

- Latency is the Most Technical Problem Over Internet Telephony: by Delay, Delay Variance (or Jitter), Asymmetrical Delay, and Unpredictable Delay
- Twenty (20) ms Coast-to-Coast Delay in the U.S. : Mostly Not Noticeable
- Fifty (50) ms Delay is Noticeable
- ◆ 250 ms Delay by the Satellites Conversation Becomes Difficult
- 350 ms Delay Over the Public Internet From Encoding and Packetizing at Both Ends of the Call
- Standard Half-Duplex Sound Card: Amateur Radio Conversation Quality
- Latency is Dependent on Lost a Packet (30 ms) or Packets, Packet Size, Buffer Size, Speaker Behavior Parameter, Protocol Application, Frame Delay, Speech Process Delay, Bridging Delay, PC Too Overloaded to Run Vocoder, and Protocol Limitations

# Quality of Services (Continued)

Performance Evaluations:

- Delay 200 Milliseconds From a Private IP Network With Good Encoding and Excellent DSP Technologies
- Laboratory Demonstrations to Analyze Voice Quality With 100 ms, 150 ms, 200 ms, and 250 ms Latency With the Following Setups:
  - 1. Workstation-to-Workstation Using the Gatekeeper
  - 2. Workstation-to-Phone Using the Cisco 3620 as a H.323 Gateway
  - 3. Phone-to-Phone Using Netrix 2210 and Cisco 3620 for Calls Connections Through IP Network

### Effect of Delay on Voice Quality



# Technical Challenges in Multimedia Networks

- Resource Reservation It is a Receiver-Driven and up to the Receiver to Select which Source to Receive and Amount of Bandwidth to be Reserved or Paid for
- Parallel IP Networks Different Bandwidth Allocations for Data and Multimedia by Virtual or Physical network
- Voice Traffic on Circuit Switched Networks
- Parallel or Overlay Networks are Being Built to Support Real-time Multimedia Traffic
- Today's DSP Delivers More Than 10 Times the Price/Performance of its Predecessors Five Years Ago, Providing 1000 MIPS for Voice Compression and Thus Reducing Latency
- SDN (Software Defined Network): Centralized routing using cloud

## Researches on Multimedia Networks

### • Inter-Frame De-Jittering (IFDJ)

 Tsang-Ling Sheu and Po-Wen Lee, "An Inter-Frame De-Jittering Scheme for Video Streaming over Mobile Communication Networks," WSEAS Conference, Salerno, Italy, Jun. 2015.

### • ARQ Block Retransmission (ABR)

 Tsang-Ling Sheu and Ching-Hua Li, "An ARQ Retransmission Scheme for Real-Time Video Multicasting over Mobile Communication Networks," To be presented in this Multimedia Conf., Birmingham, UK, Aug. 2015.

### • Off-loading in LTE-WiFi

- Paper is being prepared



# Video Frame Jitter





\* Department of Electrical Engineering



Computer Communication Network Lab

receive queue

# System Architecture



Electri

### **ARQ Block Retransmission**



IP camera



# The Proposed ABR



# The Proposed ABR

#### Check BSN and Send ARQ feedback<sup>ed number</sup>





# Conclusions

- Wireless Communications and Technologies
  - WiFi vs LTE-A
  - First-hop vs Last-hop
- Challenges in Multimedia Networks
  - Compression, Multicasting, Separate Networks
  - QoS Guarantee: Delay, Jitter, Packet Loss Rate
- Researches
  - Inter-Frame De-Jittering
  - ARQ Block Retransmission
  - Off-loading in LTE-WiFi

Thank you Q & A