3rd International Conference on Nutrition and Food Science (Nutritional Science-2014) Track 1: Nutrition and Basic Science 14:10-14:30, September 23, 2014 Committee Room 1-2 Palacio de Congresos de Valencia, Spain

Recent Advances in Vitamin K Metabolism

Kobe Pharmaceutical University

Toshio Okano

Naturally occurring vitamin K

Plasma vitamin K concentrations of healthy Japanese women

phylloquinone (ng/mL)	MK-4 (ng/mL)
1.74±1.29 (0.13~8.83)	0.10±0.19 (n.d.~1.44)

Tsugawa N, Okano T, et al, Am J Clin Nutr, 2006;83:380-386.

Amounts of dietary intake and plasma concentrations phylloquinone > > MK-4

Tissue concentrations of animals and humans MK-4 > > phylloquinone

Is phylloquinone converted into MK-4 in the body ?

What is the physiological significance of this conversion and what functions dose MK-4 have, and can we develop MK-4 analogues for clinical use ?

Suhara Y, Okano T, et al, *J Med Chem*, 2011;54:4269-4273 Suhara Y, Okano T, et al, *J Med Chem*, 2011;54:4918-4922 Suhara Y, Okano T, et al, *J Med Chem*, 2012;55;1553-1558 The aim of our study is to examine the above issues in animals and humans.

Identification of MK-4 from brain of mice by LC-MS/MS

Authentic vitamin Ks

MK-4 fraction

Experimental design

Identification of MK-4-d₇ from brain of mice by LC-MS/MS

MK-4-d₇ fraction

Not only PK-d₇ but also MK-4-d₉ and MK-7-d₇ are converted into MK-4-d₇ and accumulate in brain of mice

Phylloqunone is converted into MK-4 via integral side-chain removal

K vitamins are converted into MK-4 and accumulate in tistues Where does this conversion take pl ce? Following four routes for the conversion of PK or K_3 into MK-4, 1. Oral route 2. Enteral route 3. Intravenous route 4. Intra-cerebroventricular route were examined in mice.

Experimental design

Time course changes in serum concentrations of K_1 , MK-4 and MD in humans orally given K_1 capsules (40 mg)

Hirota Y, Okano T, et al, J Biol Chem, 2013; 288:33071-33080

$MD(K_3)$ is a catabolic product of oral phylloquinone (K₁) in the intestine and a circulating precursor of tissue MK-4 (K₂) in mammals

Hirota Y, Okano T, et al, J Biol Chem, 2013; 288:33071-33080

New paradigm of the metabolic activation of vitamin K in brain and bone

What is the enzyme(s) involved in MK-4 biosynthesis in mammals ?

Biosynthesis of menaquinones in Escherichia. coli

Alignment of the amino acid sequence of Ubia(E.coli), COQ2(Homo-sapiens), Men A(E.coli) and UBIAD1(Homo-sapiens)

ubiA_[Escherichia_coli] <u>COQ2_[Homo_sapiens]</u> _menA_[Escherichia_coli] UBIAD1_[Homo_sapiens]

ubiA_[Escherichia_coli] COQ2_[Homo_sapiens] _menA_[Escherichia_coli] UBIAD1_[Homo_sapiens]

ubiA_[Escherichia_coli] COO2 [Homo sapiens] _menA_[Escherichia_coli] UBIAD1_[Homo_sapiens]

ubiA_[Escherichia_coli] COQ2_[Homo_sapiens] _menA_[Escherichia_coli] UBIAD1_[Homo_sapiens]

ubiA_[Escherichia_coli] COQ2_[Homo_sapiens] _menA_[Escherichia_coli] UBIAD1_[Homo_sapiens]

ubiA_[Escherichia_coli] <u>COQ2_[Homo_sapiens]</u> _menA_[Escherichia_coli] UBIAD1_[Homo_sapiens]

ubiA_[Escherichia_coli] COQ2_[Homo_sapiens] _menA_[Escherichia_coli] UBIAD1_[Homo_sapiens]

nd	UBIAD1(Homo-sapiens)
1	MLGSRAAGFARGLRAVALAWLPGWRGRSF A LARAA G APHGGDLQPPACPEPRGRQLSLSA
1	MTEQQI
1	MTEQQI
1	MAASQVL <mark>G</mark> EKINILSGETVKAGDRDPLGNDCP
1	-MEWSLTQNKLLAFHRLMRTDKPIGALLLLWPTLWALWVATPGVPQLWILAVFVAGVW
61	AAVVDSAPRPL <mark>Q</mark> PYLRLMRLDKPIGTWLLYLPCTWSIGLAAEPGCFPDWYMLSLFGTGAI
7	SRTQAWLESLRPKTLPLAFAAIIVGTALAWWQGHFDPLVALLALITAGLLQILSNLANDY
33	EQDRLPQRSWRQKCASYVLALRPWSFSASLTPVALGSALAYRSHGVLDPRLLVGCAVAVL
58	LMRAAGCVVNDYADRKFDGHVKRTANRPLPSGAVTEKEARALFVVLVLISFLLVLTLNTM
121	LMRGAGCTINDMWDQDYDKKVTRTANRPIAAGDISTFQSFVFLGGQLTLALGVLLCLNYY
67	GDAVKGSDKPDRIGPLRGMQKGVITQQEMKRALIITVVLICLSGLALVAVACHTLADFVG
93	AVHGAGNLVNTYYDFSKGIDHKKSDDRTLVDRILEPQDVVRFGVFLYTLGCVCAACLYYL
118	3 TILLSIAALALAWVYPFMKRYTHLPQVVLGAAFGWSIPMAFAAVS-ESVPL
181	SIALGAGSLLLVITYPLMKRISYWPQLALGLTFNWGALLGWSAIKGSCDPS
127	7 FLILGGLSIIAAITYTVGNRPYGYIGLGDISVLVFFGWLSVMGSWYLQAHTLIP
153	3 SPLKLEHLALIYFGGLSGSFLYTGGIGFKYVALGDLIILITFGPLAVMFAYAIQVGSLAI
168	SCWLMFLANILWAVAYDTQYAMVDRDDDVKIGIKSTAILFGQY-DKLIIGILQIGVLALM
232	VCLPLYFSGVMWTLIYDTIYAHQDKRDDVLIGLKSTALRFGEN-TKPWLSGFSVAMLGAL
181	ALILPATACGLLATAVLNINNLRDINSDRENGKNTLVVRLGEVNARRYHACLLMGSLVCL
213	FPLVYAIPLALSTEAILHSNNTRDMESDREAGIVTLAILIGPTFSYILYNTLLFLPYL
227	7 AIIGELNGLGWGYYWSILVAGALFVYQQKLIANREREACFKAFMNNNYVGLVLFLGLAMS
291	SLVGVNSGQTAPYYAALGAVGAHLTHQIYTLDIHRPEDCWNKFISNRTLGLIVFLGIVLG
241	ALFNLFSLHSLWGWLFLLAAPLLVKQARYVMREMDPVAMRPMLERTVKGALLTNLLFVLG
271	VFSILATHCTISLALPLLTIPMAFSLERQFRSQAFNKLPQRTAKLNLLLGLFYVFGIILA
287	7 -YWHF

287 - YWHF-----351 NLWKEKKTDKTKKGIENKIEN 301 IFLSQWAA-----331 PAGSLPKI-----

Conversion of K₃-d₈ or MK-4-d₁₂ to MK-4-d₇ in siControl-, siUBIAD1- or siCOQ2-transfected MG-63 cells

Conversion of PK-d₇ and MK-4-d₁₂ into MK-4-d₇ in Sf9 cells transfected with siControl or pcDNA3.3-UBIAD1(UBIAD1 expression vector)

Values are means and s.e.m. (n=6). Three asterisks, P<0.001 versus control-infected Sf9 cells with the same compound treatment.

MK-4 biosynthetic activity of UBIAD1 in microsomes prepared from *UBIAD1* baculovirus-infected Sf9 cells with geranylgeranyl pyrophosphate (GGPP) and MD

Subcellular localization of UBIAD1 in MG-63 cells

MG-63 cells stably transfected with a UBIAD1–GFP expression vector were stained with ER-tracker Red or BODIPY-TR ceramide (red) and were detected by GFP fluorescence (green). Merged images of GFP fluorescence and by ER-marker or Golgi-marker fluorescence are shown at the right. The control construct (mock-GFP) showed a diffuse fluorescence throughout the cytoplasm.

Nakagawa K. et al., Nature 2010; 468:117-121.

UBIAD1 mRNA expression, MK-4 biosynthetic activity, concentrations of MK-4 and its epoxide in tissues of female mice

UBIAD1 is a novel biosynthetic enzyme for MK-4 that may have both side-chain cleavage and prenylation activities

Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme

Nature 2010; 468:117-121.

Kimie Nakagawa, Yoshihisa Hirota, Natsumi Sawada, Naohito Yuge, Masato Watanabe, Yuri Uchino, Naoko Okuda, Yuka Shimomura, Yoshitomo Suhara & Toshio Okano Department of Hygienic Sciences, Kobe Pharmaceutical University,

MK-4 biosynthesis in tissues is decreased by the treatments with statins and bisphosphonates

Mevalonate pathway Acetyl-CoA Statin HMG-CoA HMG-CoA reductase **Mevalonic acid Bisphosphonate** Geranyl pyrophosphate (GPP) FPP synthase Farnesyl pyrophosphate(FPP) Geranylgeranyl pyrophosphate(GGPP)

P-P:

Possible interaction of MK-4 biosynthesis, vitamin K cycle and vitamin K action

mTO Ubiad1 ATG Ubiad1 exon1 → exon2 R Α ex n' Wild-type allele 1.1 kb 3.5 kb 6.7 kb In IoxP Targeting vector DTA neoR SacII Sall Clall Notl Kpnl C: FRT Nhel + . 1.7 kb Spel Ubiad1-neo neoR floxed allele Cre recombinase **Targeted allele** PCR primerF R

Generation of *Ubiad1* knockout mice

M.W. 500 bp 100 bp Posi +/- +/+ -/-(bp) 1500-500-300-

Β

(A) Schematic presentation of ubiad1 genome, targeting vector and disrupted *Ubiad1* genome. (B) PCR genotyping of *Ubiad1*^{+/+}, *Ubiad1*^{+/-} and *Ubiad1*^{-/-} embryos. PCR genotyping of tail DNA of *Ubiad1*^{+/+}, *Ubiad1*^{+/-} and *Ubiad1*^{-/-} embryos. Lane 1, positive controls for *Ubiad1*^{+/-} allele. Lane 2, PCR bands of *Ubiad1*^{+/-} embryos. Lane 3, PCR bands of *Ubiad1*^{+/+} embryos. Lane 4, PCR bands of *Ubiad1*^{-/-} embryos.

Nakagawa K, Okano T, et al, PLOS ONE 2014; 9: 1-12, e104078

Morphological examination of *Ubiad1*^{+/+}, *Ubiad1*^{+/-} and *Ubiad1*^{-/-} embryos and weanling mice (postnatal day 1) from pregnant *Ubiad1*^{+/-} mice orally administered CoQ10

Ubiad1-deficient mouse embryos failed to survive beyond embryonic day 7.5 exhibiting small-sized body and gasturation arrest !!!

Generation of a neural cell specific *Ubiad1-¹⁻* mouse

