
Efficacy of a novel bactericide for elimination of biofilm in food processing facilities

Tong Zhao Center for Food Safety University of Georgia

For 3rd International Conference and Exhibition on Food Processing & technology

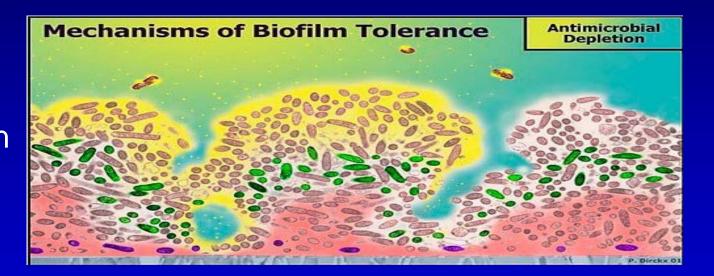
Biofilm

Biofilms are single or multi layers of microorganisms embedded in their own extracellular polymeric substances (EPS) which associate with a solid surface

Initial attachment
 Irreversible attachment
 Microcolony
 Maturation
 Dispersion

Biofilm

Predominant matrix for bacterial growth


> ~ 80% of all bacterial infections are biofilm-associated

Problem

Cells in biofilms are more resistant to cleaning and disinfection processes than their planktonic counterparts

EPS
Slow growth
Gene expression

Development of a novel bactericide

Effective, easy-to-use, cost-efficient, and environmentally friendly.

Levulinic acid and sodium dodecyl sulfate (SDS) were tested in combination at different concentrations and temperatures (8 or 82°C) either as liquid or foam for their killing effects on human pathogens formed as biofilms.

Development of a novel bactericide

Effective, easy-to-use, cost-efficient, and environmentally friendly.

Levulinic acid and sodium dodecyl sulfate (SDS) were tested in combination at different concentrations and temperatures (8 or 82°C) either as liquid or foam for their killing effects on human pathogens formed as biofilms.

Development of a novel bactericide

U. S. Patent and Trademark Office. U.S. patent number 8,722,123. Issue date: May 13, 2014. Antimicrobial Composition and Use as Food Treatment.

More than 10 papers regarding its application on dental, produce, poultry, and meat have been published.

Marked by HealthPro Brands.

Chemical Inactivation of *S*. Enteritidis on biofilm as a liquid at 21°C

Coupon material	Chemical solution	Salmonella Enteritidis counts (log CFU/cm2) at minutes					
		0	1	2	5	10	20
Stainless steel	PBS, pH 7.2	8.0	8.4	8.5	8.6	8.2	8.1
	Acidified sodium chlorite (500 ppm), pH 2.8	7.5	5.9	5.7	5.4	6.2	6.0
	3% levulinic acid plus 2% SDS, pH 3.0	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7
Polyvinyl chloride	PBS, pH 7.2	8.8	9.0	8.1	8.8	8.0	8.3
	Acidified sodium chlorite (500 ppm), pH 2.8	6.9	5.5	5.8	5.3	4.2	2.9
	3% levulinic acid plus 2% SDS, pH 3.0	2.3	1.7	2.0	2.2	<0.7	<0.7
Nitrile rubber	PBS, pH 7.2	7.8	8.0	8.5	7.7	7.9	7.7
	Acidified sodium chlorite (500 ppm), pH 2.8	7.2	5.2	2.7	2.6	1.3	<0.7
	3% levulinic acid plus 2% SDS, pH 3.0	4.1	1.7	1.7	<0.7	<0.7	<0.7
Glass	PBS, pH 7.2	8.2	8.7	8.4	8.4	8.4	8.4
	Acidified sodium chlorite (500 ppm), pH 2.8	6.8	3.3	0.7	0.7	<0.7	<0.7
	3% levulinic acid plus 2% SDS, pH 3.0	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7
Ultra-high molecular weight polyethylene	PBS, pH 7.2	8.4	8.4	8.6	8.4	8.4	8.4
	Acidified sodium chlorite (500 ppm), pH 2.8	6.8	6.1	2.1	0.7	<0.7	<0.7
	3% levulinic acid plus 2% SDS, pH 3.0	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7

Inactivation of *S.* Enteritidis on biofilm by 3% levulinic acid plus 2% SDS as a foam at 21°C

Coupon material	Chemical solution	Salmonella Enteritidis counts (log CFU/cm ²) at minutes					
		0	1	2	5	10	20
Stainless steel	PBS, pH 7.2	7.3	7.7	8.0	7.2	8.0	7.3
	3% levulinic acid plus 2% SDS, pH 2.8	8.3	6.7	6.8	4.0	2.3	2.0
Polyvinyl chloride	PBS, pH 7.2	8.0	8.3	8.2	8.6	8.2	8.6
	3% levulinic acid plus 2% SDS, pH 2.8	5.8	4.9	3.1	3.0	3.2	1.0
Nitrile rubber	PBS, pH 7.2	7.4	7.6	7.6	7.5	7.4	7.2
	3% levulinic acid plus 2% SDS, pH 2.8	7.1	4.1	3.5	3.3	2.4	1.7
Glass	PBS, pH 7.2	8.0	8.5	7.7	7.9	7.8	7.9
	3% levulinic acid plus 2% SDS, pH 2.8	4.9	4.4	3.3	3.5	1.7	1.7
Ultra-high molecular	PBS, pH 7.2	6.9	6.9	6.7	6.4	6.7	6.3
weight polyethylene	3% levulinic acid plus 2% SDS, pH 2.8	5.4	4.6	2.9	2.3	1.7	1.7

	2%LA+0.5%SDS(Foam)							
	1%LA+0.1%SDS(Foam)							
H7	0.5%LA+0.05%SDS(Foam)						3 0 min	2 0 min
coli O157:H7	2%LA+0.5%SDS						= 50 mm	= 20 mm
	1%LA+0.1%SDS				-		1 0 min	5 min
Е. сс	0.5%LA+0.05%SDS	;	<u> </u>			4	– 10 mm	= 5 mm
	Quat sanitizer (150 ppm)		i				■3 min	2 min
	Water					<u></u>	- 5 mm	<i>2</i> IIIII
	2%LA+0.5%SDS(Foam)	,					1 min	■ 0 min
	1%LA+0.1%SDS(Foam)						- 1 111111	
S. Typhimurium	0.5%LA+0.05%SDS(Foam)							
muri	2%LA+0.5%SDS							
/phii	1%LA+0.1%SDS			4I				
S. TJ	0.5%LA+0.05%SDS			4	-			
•1	Quat sanitizer (150 ppm)		<u> </u>	————————————————————————————————————				
	Water							
	2%LA+0.5%SDS(Foam)					·		
	1%LA+0.1%SDS(Foam)							
enes	0.5%LA+0.05%SDS(Foam)							
ytog	2%LA+0.5%SDS							
. monocytogenes	1%LA+0.1%SDS			4				
	0.5%LA+0.05%SDS							
Γ	Quat sanitizer (150 ppm)							
	Water							4
		1 2	3	4	5 6	7	8	9 10
	· · · · · · · · · · · · · · · · · · ·	1 2	5		U/blade	,	0	, 10

Before chemical treatment

- 1. The Salmonella isolation rate was 19% (19/100).
- The fecal coliform population averaged 6.8 CFU/25 cm² log (ranged from 3 to 9.3 log CFU/25 cm²).
- The total aerobic bacteria count averaged 7.9 log CFU/25 cm² (ranged from 5.7 to 9.9 log CFU/25 cm²).

After treatment with 3% levulinic acid plus 2% SDS as a foam

- 1. The Salmonella isolation rate was 1% (1/100).
- The fecal coliform population averaged 1.15 log CFU/25 cm² (ranged from 0.6 to 3.1 log CFU/25 cm²), a 5.6 log CFU/25 cm² reduction.
- 3. The aerobic bacteria count averaged 4.8 log CFU/cm² (ranged from 1.6 to 7.5 log CFU/25 cm²), a 3.2 log reduction.

• 72 h

• 100% RH

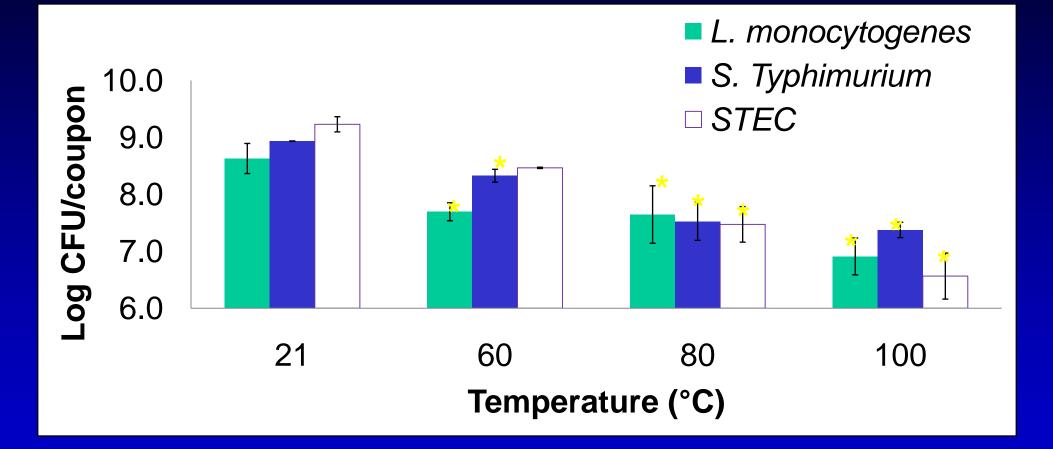
21°C Biofilm Growth

and / or

10-min Sanitizer Treatment

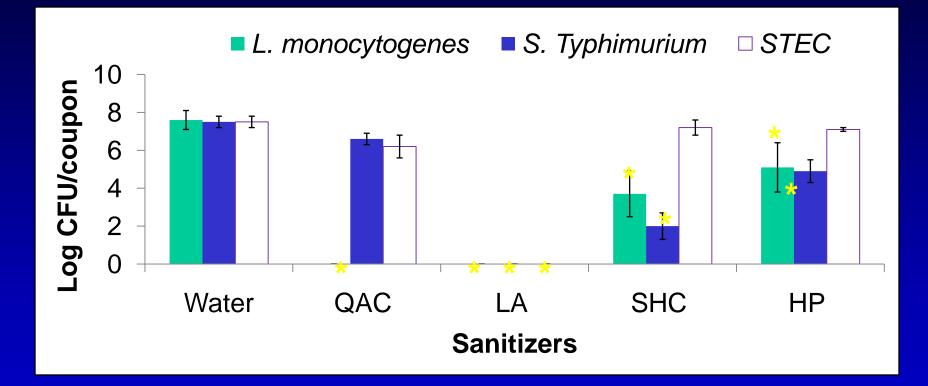
10-min Heat Treatment

60, 80, and 100°C

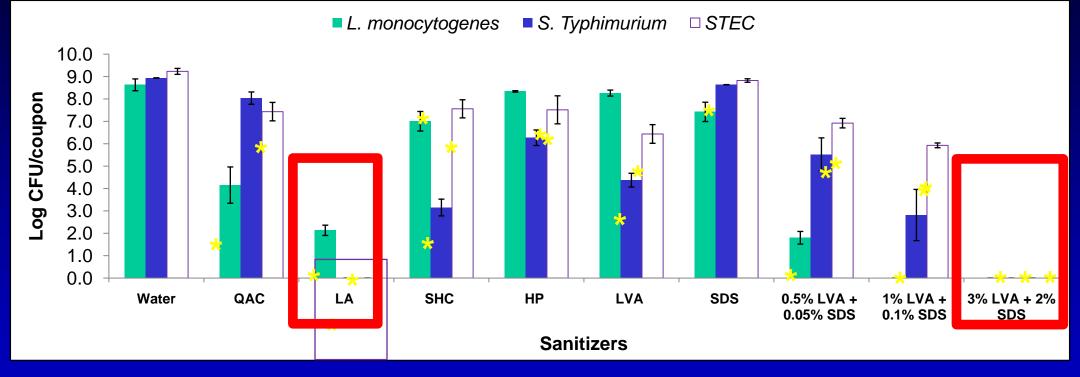

QAC, 150 ppm quaternary ammoniumbased sanitizer; LA, 3% lactic acid; SHC, 100 ppm sodium hypochlorite; HP, 2% hydrogen peroxide; LVA, 3% levulinic acid; SDS, 2% sodium dodecyl sulfate 0.5% LVA + 0.05% SDS 1% LVA + 0.1% SDS 3% LVA + 2% SDS

Acid Shock

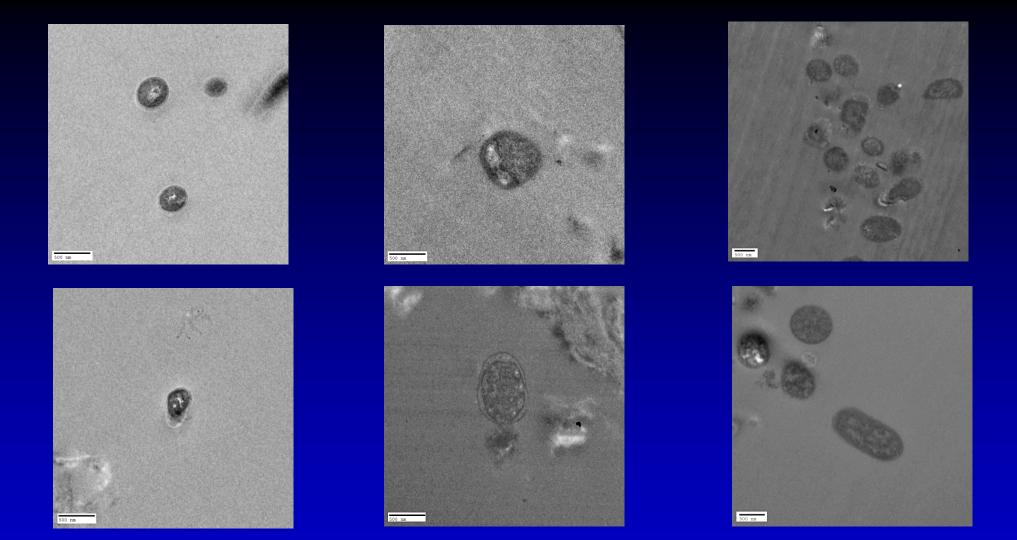
Bacteria counts of selective agar plates and TSA of 72-h biofilms of *L. monocytogenes*, *S.* Typhimurium, and STEC formed on stainless steel after a 10-min treatment with 3% lactic acid (pH 2.2) or 3% levulinic acid (pH 2.7).


Pathogen	Acid (3%)	Count (log CFU/c Selective agar plates	oupon) TSA	% injured cells
	Water	8.6 ± 0.3	8.6 ± 0.2	0
L. monocytogenes	Lactic acid	2.1 ± 0.2	4.4 ± 0.2	52.3%
	Levulinic acid	8.3 ± 0.1	8.3 ± 0.2	0
	Water	8.9 ± 0.0	9.0 ± 0.0	1.1%
S. Typhimurium	Lactic acid	< <mark>1</mark> .7	3.1 ± 0.0	> 45.2%
	Levulinic acid	4.4 ± 0.3	8.6 ± 0.2	48.8%
STEC	Water	9.2 ± 0.1	9.3 ± 0.1	1.1%
	Lactic acid	< 1 .7	5.7 ± 0.1	> 70.2%
	Levulinic acid	6.4 ± 0.4	8.8 ± 0.1	27.3%

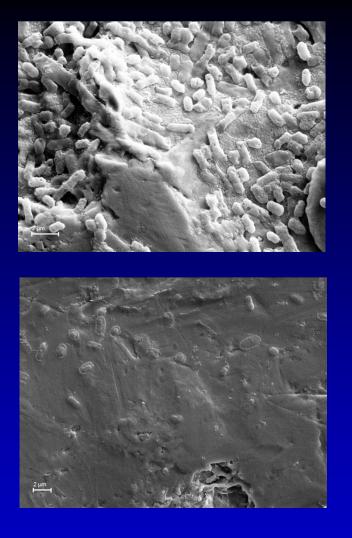
10-min Heat Treatment

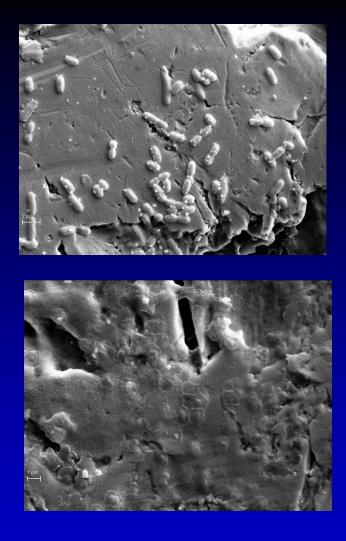

Inactivation of 72-h biofilms of *L. monocytogenes*, *S.* Typhimurium, and STEC formed on stainless steel after receiving 10-min heat treatment at 21, 60, 80 or 100°C.

80°C + Sanitizer Treatment



Inactivation of 72-h biofilms of *L. monocytogenes*, *S.* Typhimurium, and STEC formed on stainless steel after receiving a 10-min 80°C treatment and a subsequent 10-min sanitizer treatment.


10-min Sanitizer Treatment



Inactivation of 72-h biofilms of *L. monocytogenes*, *S.* Typhimurium, and STEC formed on stainless steel after receiving a 10-min sanitizer treatment.

Representative images made by TEM of biofilms formed by *Listeria monocytogenes* (A, B), *Salmonella* (C, D), and STEC (E, F) after a 10-min treatment with water (control, A, C, E), and 0.5% levulinic acid + 0.05% SDS (B, D, F).

Representative images made by SEM of biofilms formed by *Salmonella* after a 10-min treatment with water (control, A), 0.5% levulinic acid + 0.05% SDS (B), 1% levulinic acid + 0.5% SDS (C), and 3% levulinic acid + 2% SDS (D).

Conclusions

All foodborne pathogens as tested, including *E*. *coli* O157:H7, *Salmonella*, *L. monocytogenes* have the potential to form the biofilms on the surface of materials that commonly used in the processing facilities.

Levulinic acid-based sanitizer either in liquid or in foam has strong ability to remove or eliminate the biofilms.

Acknowledgements

Michael P. Doyle, Dong Chen, Yen-con Hung, Ping Zhao, University of Georgia; and Juan F. DeVillena, Wayne Farms LLC, for his technical assistance.

This study was supported by grants from the Center for Food Safety, University of Georgia; the National Institute of Food and Agriculture, U. S. Department of Agriculture; and the State of Georgia's Traditional Industries Program for Food Processing.