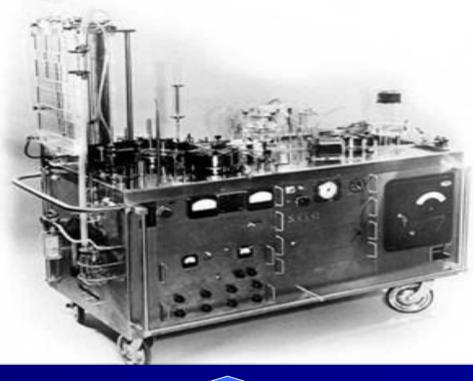

Pediatric extracorporeal life support systems and Pediatric cardiopulmonary perfusion systems: Now and future

> Asist.Prof.Dr. Tolga KURT Canakkale Onsekiz Mart University Turkey


International Conference and Exhibition on Pediatric Cardiology August 25-27, 2015 Valencia



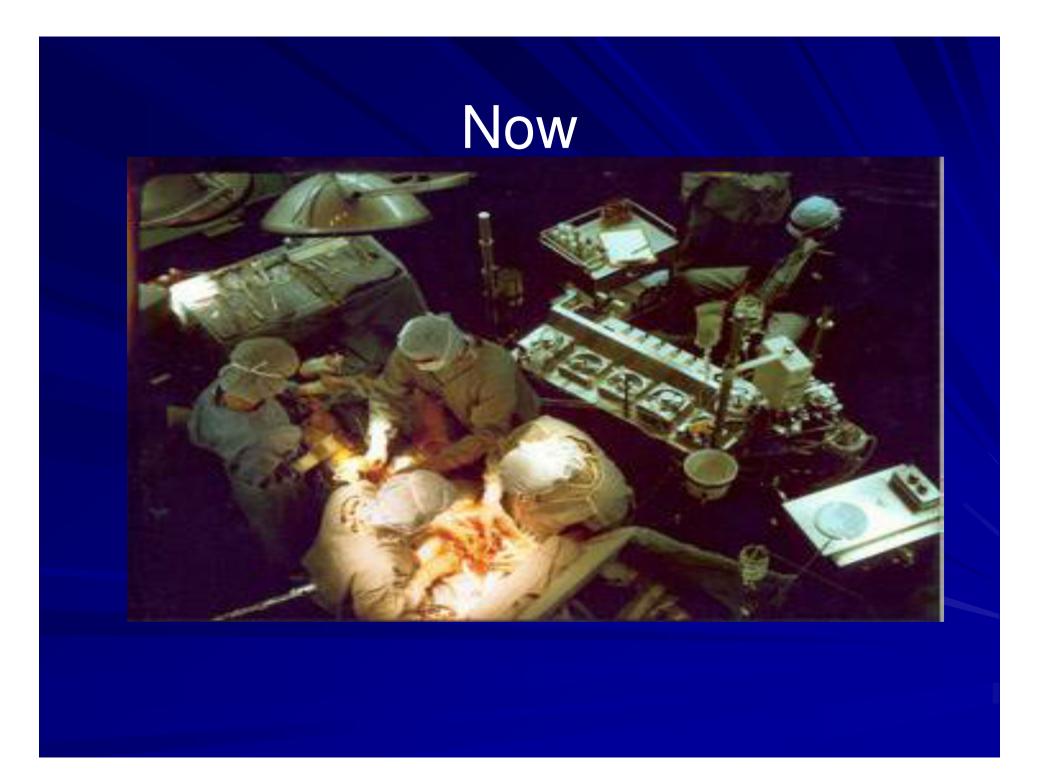
#### Background - History



# The first heart-lung machine (HLM) which was made by Gibbon






#### The new HLM machines





# One of the first machines and surgical team





# Differances between pediatric and adult Cardiopulmonary Perfusion

- Pediatric organ sytems are not developed sufficiently as adults.
- The size of the organs are smaller than the adults
- The rate of metabolism is higher than adults ↔ higher perfusion rate is needed.
- The frequent need of intracardiac access
- Presence of abnormal anatomy and physiology

#### Differances between pediatric and adult cardiopulmonary

- bypass (CPB) procedures
   Extreme hypothermia, hemodilution and perfusion flow rate values
- Pathological anatomy 
  →operation technical changes
- CPB circuit extremely large compared to body mass index
- The prime volume is more than the total blood of newborns and infants.
- Large body mass index differences observed in the cases -> selection of appropriate materials required in each case.

# Pediatric CPB Complications

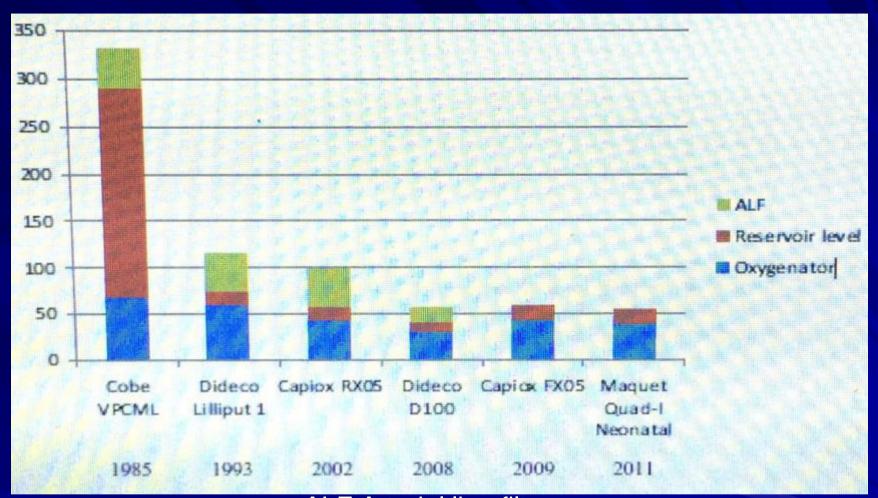
We must lower the prime volume ↓
We must lower the surface area which the blood contacts. ↓
We must reduce the size of the circuit components ↓

#### Prime Volume

■ Adults → 25-30 % Of the total blood volume

■ Neonates → 2-3 times Of the total blood volume

■ To prevent excessive hemodilution → Donor blood can be add to prime volume


#### Sanguineous prime volume

- Blood-borne infections
- Reinforcement of inflammatory reaction
- Transfusion-induced acute lung injury
- Pulmonary hypertension
- The organ perfusion disorders due to rheological properties
- Low cardiac index

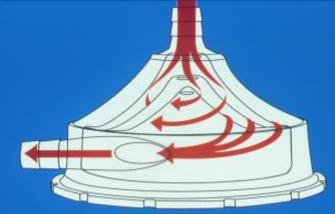
#### Our Target :

- Lower prime oxygenator volume
- Reducing the size of the venous line
- Reducing the size of the circuit
- Arterial line filter
- Venous Reservoir Level

The circuit prime volume reduction and **non** *sanguineous prime* volume



ALF:Arterial line filter


McRobb CM, Mejak BL, Ellis WC, Lawson DS, Twite MD. Recent Advances in Pediatric Cardiopulmonary Bypass. Semin Cardiothorac Vasc Anesth . 2014;18(2):153–60.

#### Pediatric CPB pumps

#### Roller Pumps

#### Centrifugal Pumps



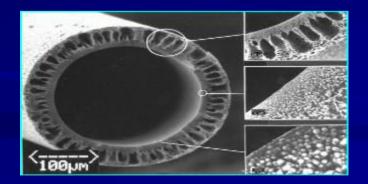


#### **Roller Pumps**

- +++ With small diametered lines, the prime volume is low
- +++ Sensitive flow control even at low flow rates
- In the second second
- --- Roller pump induced tubing tear of polyvinylchloride and silicone rubber tubing
- Inability to provide appropriate position The new generation heart lung machine can be given the required position.

#### **Centrifugal Pumps**

#### +++ More mobile


- +++ Less hemolysis or damage to the other formed elements of the blood
- +++ Reducing the flow line to prevent the high pressure in arterial line obstructions
- High prime volume
- Insufficient sensitivity at low flow rates

#### New generation centrifugal pumps

|                                   | Prime volume<br>(ml) | Max Flow<br>(L/min) | Connector |
|-----------------------------------|----------------------|---------------------|-----------|
| Medos Deltastream DP3             | 16                   | 8                   | 3/8"      |
| Medos s.pump                      | 17                   | 8                   | 3/8"      |
| Levitronix CentriMag              | 31                   | 10                  | 3/8"      |
| Maquet ROTAFLOW                   | 32                   | 10                  | 3/8"      |
| Medtronic Affinity CP             | 40                   | 10                  | 3/8"      |
| Terumo CAPIOX SP                  | 45                   | 8                   | 3/8"      |
| Medtronic BP-50 Bio-Pump          | 48                   | 1.5                 | 1/4"      |
| Sarns disposable centrifugal pump | 48                   | 10                  | 3/8"      |
| Sorin RevOlution                  | 52                   | 8                   | 3/8"      |

#### **Pediatric Oxygenators**

Structure  $\rightarrow$  Holow fiber Gas exchange surface  $\rightarrow$  porous polypropylene Gases transmit from the pores  $\rightarrow$  through blood Erythrocytes and plasma does not transmit !!





#### **Pediatric Oxygenators**

Wide temperature range (10 °C - 40 °C) Wide flow range (0 - 200 ml / kg / min) Htc wide range (15% - 40%) Wide range of line pressure Wide gas flow range  $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ **Despite its small surface area, effective** 

gas exchange, even at high flow.

| Pediatric Oxygenators     Priming     Surface area     Max Flow       (I/min)     (I/min)     (I/min) |             |      |         |  |
|-------------------------------------------------------------------------------------------------------|-------------|------|---------|--|
| r culatile oxygenators                                                                                | volume (ml) | (m2) | (L/min) |  |
|                                                                                                       |             |      |         |  |
| Sorin D100 Kids                                                                                       | 31          | 0.22 | 0.7     |  |
| Maquet QUADROX-i Neonatal                                                                             | 38          | 0.38 | 1.5     |  |
| Terumo CAPIOX BabyRx                                                                                  | 43          | 0.50 | 1.5     |  |
| Medtronic Affinity Pixie                                                                              | 48          | 0.67 | 2       |  |
| Medos Hilite 1000                                                                                     | 57          | 0.39 | 1       |  |
| Sorin Lilliput I                                                                                      | 60          | 0.34 | 0.8     |  |
| Maquet QUADROX-i Pediatric                                                                            | 81          | 0.80 | 2.8     |  |
| Sorin D101 Kids                                                                                       | 87          | 0.61 | 2.5     |  |
| Medos Hilite 2800                                                                                     | 98          | 0.80 | 2.8     |  |
| MedtronicMinimax Plus                                                                                 | 149         | 0.80 | 2.3     |  |

#### **Pediatric Tubing Sets**

- Tubing sets  $\rightarrow$  75 % of the prime volume
- The most important step in reducing the tubing set volume 
  → Reducing the length and diameter of the tubing set:
  - -----Approximation of the pump to the patient  $\rightarrow$  about 29% reduction in the volume of prime
- Tubing set diameter reduction → the resistance to flow increase → assisted venous drainage
- Shortening of the tubing set → decrease of the resistance

#### **Pediatric Arterial Filters**

Disadvantages:
 -----High prime volume
 -----A large foreign surface
 -----The difficulty of removing the air bubbles

| Pediatric Arterial Filters   | Priming<br>volume (ml) | Max Flow<br>(L/min) | Pore (µm) |
|------------------------------|------------------------|---------------------|-----------|
| Sorin D130 Kids ALF          | 16                     | 0.7                 | 40        |
| Sorin D131 Kids ALF          | 28                     | 2.5                 | 40        |
| Medtronic Affinity Pixie ALF | 39                     | 3.2                 | 30        |
| Terumo CAPIOX ALF AF02       | 40                     | 2.5                 | 32        |

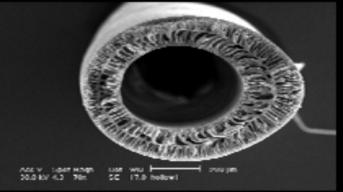
#### Integrated products

Only reducing the component size > insufficient to reduce prime volume
 We need integrated component products > oxygenator + arterial filter

|                            | Priming<br>volume (ml) | Max Flow<br>(L/min) | Pore (µm) |
|----------------------------|------------------------|---------------------|-----------|
| Maquet QUADROX-i Neonatal  | 38                     | 1.5                 | 33        |
| Terumo CAPIOX FX05         | 43                     | 1.5                 | 32        |
| Maquet QUADROX-i Pediatric | 81                     | 2.8                 | 33        |
| Terumo CAPIOX FX15         | 144                    | 5.0                 | 32        |

#### Integrated products

- No need for an extra prime volume for the arterial filters
- The captured gas bubbles are transferred to the oxygenator gas reservoir by the pressure difference.
- Particulate emboli capture efficiency is similar to standard filters
- Gas emboli capture efficiency is higher than standard filters


#### Pediatric cardioplegia

Standard blood cardioplegia Del Nido cardioplegia Crystalloid cardioplegia -----St. Thomas solution -----Custodiol (Histidine-Tryptophan-Ketoglutarate) Microplegia -----Quest Biomedical MPS2 Myocardial Protection System (prime 7-35 mL)

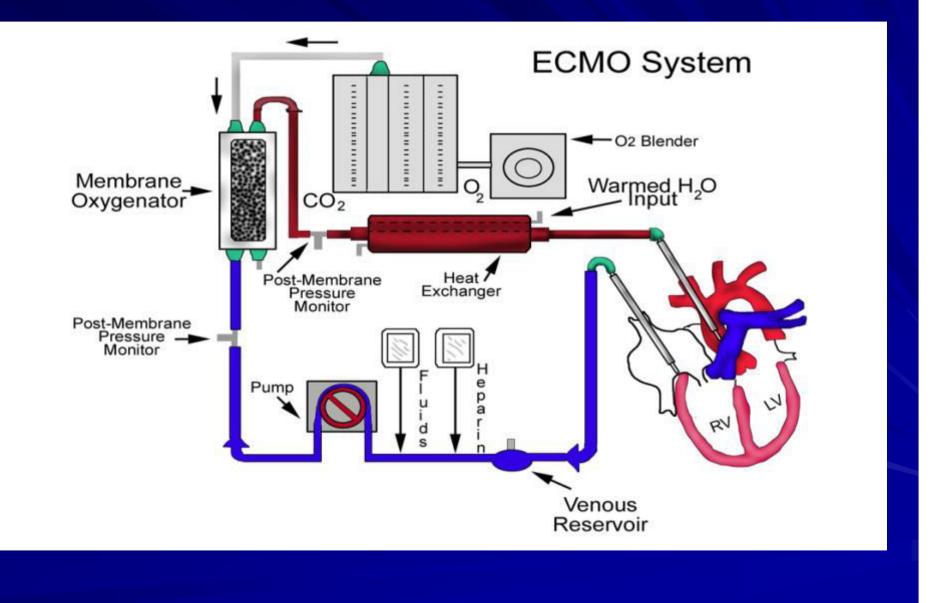
#### **Pediatric Ultrafiltration**

It has a porous hollow fiber structuremade with polysulfone, molecules Weighting <50-65 kDa can pass.

Aim: Reduction of Edema Raising hematocrit values Removal of electrolyte (potassium) Removal of Inflammation mediators, lactate and citrate



| Pediatric Ultrafiltration            | Prime(ml) |
|--------------------------------------|-----------|
| Medivator Hemocor HPH Jr             | 8         |
| Medivator Hemocor HPH Mini           | 14        |
| Maquet BC20 Plus                     | 17        |
| Medos Hemofilter Pro 20              | 17        |
| Sorin Dideco DHFO.2 Hemoconcentrator | 30        |
| Medivator Hemocor HPH 400            | 34        |
| Terumo CAPIOX Hemoconcentrator       | 35        |
| Medos Hemofilter Pro 60              | 52        |
| Maquet BC60 Plus                     | 65        |
|                                      |           |


#### **ECMO-ECLS**

(Extracorporeal Membrane Oxygenation - ExtraCorporeal Life Support)

The aim is to provide sufficient time and appropriate environment for the restoration of myocardial and lung damage.

ECLS
 ----ECMO
 ----ECCO2R (Extracorporeal carbon dioxide removal )
 ----VAD (ventricular assist device )

#### **ECMO-ECLS**



## ECMO PUMPS

- Roller pumps are the most commonly used.
- ++++ Inexpensive
- ++++ Reliable
- ++++ Laminar flow
- ----- Hemolysis
- ----- Spallation and tube rupture

#### Spallation :

The sloughing off of plastic and silastic tubing particles into the lumens of tubing through the erosive and fatiguing action of rollers in the pump head.

### Spallation and tube rupture

**PVC** Tubing

1 Hr. at 15° C 1 Hr. Rewarming to 37° C 2 Hrs. at 37° C

#### **ECMO PUMPS**

To prevent excessively high and low pressure formation  $\rightarrow$  continuous measurement of arterial and venous pressure line

|                                  | Prime volume<br>(mL) | Connector |
|----------------------------------|----------------------|-----------|
| Medtronic Bladder Reservoir R-14 | 35                   | 1/4"      |
| Medtronic Bladder Reservoir R-38 | 35                   | 3/8"      |

## **ECMO PUMPS**

Centrifugal Pumps: ++++ Less traumatic to blood cells ----- Sensitive preload and afterload Insufficient flow due to the high internal resistance of the silicon membrane oxygenators. ----- The risk of thrombosis in long-term use (5-7 days).

- For long-term usage → non-porous silicon membrane oxygenators
- There are no holes in the silicon membrane. Gases diffuse through the blood from the silicon

- Spiralcoiled structure → high resistance to blood flow → blood oxygenator transition speed slows down and increases gas transfer
- Internal heat exchanger available → also adding circuit heat exchanger unit → increase in the prime volume of the system

| Silicone membrane<br>oxygenators | Prime<br>volume<br>(mL) | Surface area<br>(m2) | Max Flow<br>(L/min) |
|----------------------------------|-------------------------|----------------------|---------------------|
| Avecor/Medtronic 0800            | 100                     | 0.8                  | 1.2                 |
| Avecor/Medtronic 1500            | 175                     | 1.5                  | 1.8                 |

Polymethylpentene porous hollow fiber oxygenator: ++++Long-term use (up to 2 weeks) No largely plasma leakage +++++ Internal heat exchanger  $\rightarrow$ No increase in prime volume +++++ Centrifugal pump usage according to their low internal resistance

| Polymethylpentene<br>oxygenator | Prime volume<br>(mL) | Surface<br>area<br>(m2) | Max Flow<br>(L/min) |
|---------------------------------|----------------------|-------------------------|---------------------|
| Medos Hilite 800LT              | 55                   | 0.32                    | 0.8                 |
| Eurosets ECMO NEW BORN          | 90                   | 0.69                    | 1.5                 |
| Medos Hilite 2400LT             | 95                   | 0.65                    | 2.4                 |
| Sorin EOS ECMO                  | 150                  | 1.2                     | 5                   |
| Maquet QUADROX-iD ECMO          | 250                  | 1.8                     | 7                   |

## **ECMO Heat Exchangers**

#### ■ Newborn ECMO → thermoregulation ability is underdeveloped

|                           | Prime volume<br>(mL) | Max Flow<br>(L/min) |
|---------------------------|----------------------|---------------------|
| Gish Biomedical HE-3      | 20                   | 2                   |
| Medtronic ECMOtherm II HE | 50                   | 2                   |
| Gish Biomedical HE-4      | 60                   | 2                   |

#### **ECMO Tubing Sets**

- DEHP in PVC tubes (di (2-ethylhexyl) phthalate)

   infertility in long-term usage
- No abnormalities in clinical development for patients
- ECMO with the roller pump → PVC tube line in the pump head → spallation and tube rupture
- Tygon S-65 HL tubes are more resistant to spallation and tube rupture, they can be preferred.

#### Pediatric circulatory support

Short-term (<30 days) assistance → ECMO, centrifugal pump or roller pump</li>
 Long-term assistance → Ventricular assist devices (VAD):

Parakorporeal pneumatic pulsatile VAD

Newborns and infants→Berlin Heart, Medos HIA VAD

Adolescents→Thoratec VAD, Heartmate VAD

Axial flow devices → MicroMed/DeBakey VAD



Good luck to all of our children, and Godspeed in now and future.

Thank You...

#### References

- 1.Van Doorn C, Elliott M. Cardiopulmonary Bypass in Children with Congenital Heart Disease. In: Kay PH, Munsch CM, editors.
- Techniques in Extracorporeal Circulation. 4th ed. London: Arnold; 2004. p. 177–83.
- 2.Giacomuzzi C, Brian M, Shen I. Pediatric Cardiopulmonary Bypass Overview: State of the Art and Future. In: Gravlee GP, Davis RF,
- Stammers AH, Ungerleider RM, editors. Cardiopulmonary Bypass: Principles and Practice. 3rd ed. Philadelphia: Lippincott Williams &
- Wilkins; 2008. p. 686–700.
- **3**.Charette KA, Davies RR, Chen JM, Quaegebeur JM, Mosca RS. Pediatric Perfusion Techniques for Complex Congenital Cardiac Surgery.
- In: Mongero LB, Beck JR, editors. On Bypass: Advanced Perfusion Techniques. New Jersery: Humana Press Inc.; 2008. p. 29–58.
- 4.McRobb CM, Mejak BL, Ellis WC, Lawson DS, Twite MD. Recent Advances in Pediatric Cardiopulmonary Bypass. Semin Cardiothorac
- Vasc Anesth. 2014;18(2):153–60.
- 5. Chai PJ. Myocardial Protection and Preservation for Neonates and Infants. In: Gravlee GP, Davis RF, Stammers AH, Ungerleider RM,
- editors. Cardiopulmonary Bypass: Principles and Practice. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 701–10.
- 6.Turkoz R. Myocardial protection in pediatric cardiac surgery. Artif Organs. 2013;37(1):16–20.
- 7.Kotani Y, Tweddell J, Gruber P, Pizarro C, Austin EH, Woods RK, et al. Current cardioplegia practice in pediatric cardiac surgery: a
- North American multiinstitutional survey. Ann Thorac Surg. 2013;96(3):923–9.
- 8. Hickey EJ, Karamlou T, Ungerleider RM. Brain Injury Following Infant Cardiac Surgery and Neuroprotective Strategies. In: Gravlee GP,
- Davis RF, Stammers AH, Ungerleider RM, editors. Cardiopulmonary Bypass: Principles and Practice. 3rd ed. Philadelphia: Lippincott
- Williams & Wilkins; 2008. p. 711–35.
- 9.Searles B, Darling E. Ultrafiltration in Cardiac Surgery. In: Mongero LB, Beck JR, editors. On Bypass: Advanced Perfusion Techniques.
- New Jersery: Humana Press Inc.; 2008. p. 193–210.
- **10**.McMullan DM, Elliot MJ, Cohen GA. ECMO for Infants and Children. In: Gravlee GP, Davis RF, Stammers AH, Ungerleider RM, editors.
- Cardiopulmonary Bypass: Principles and Practice. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 736–56.
- 11.Khan S, Vasavada R, Qiu F, Kunselman A, Undar A. Extracorporeal life support systems: alternative vs. conventional circuits.
- Perfusion. 2011;26(3):191–8.
- 12.Ravishankar C, Gaynor JW. Circulatory Assist Devices for Infants and Children. In: Gravlee GP, Davis RF, Stammers AH, Ungerleider RM, editors. Cardiopulmonary Bypass: Principles and Practice. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 757–66.