

Hello, everybody

Phylogeographical studies of Angiostrongylus cantonensis and its host Achatina fulica

Based on mt ND2 and Cytb genes.

Yang Tingbao, He Zhangping, Lun Zhaorong, Wu Zhongdao School of Life Sciences, Sun Yat-sen University

Phylogeography

Phylogeography: Study of the relationship between genealogy and (Avise, et al 1987), to identify the intraspecific evolutionary processes based on the present phylogeographical patterns.

Molecular phylogeography: Based on different molecular markers, such as RAPD, RFLP, AFLP, SSR, ISSR, and mtDNA sequences such as CO1 and ND2 of mtDNA.

General objective: From intraspecific micro-evolution to interspecific macroevolution (Avise, 2000)

慎思 明辨

归

General Phylogeographic Models

B

А

B

Conspicous divergence in phylogeny, but sympatric

Large divergence in phylogeny

值思

明辨

and allopatric

Consecutive in phylogeny and

distribution

Terrestrial environment: 3 Unconspicous genetic structure Existing some physical barriers, organisms can be transported by Small, but conspicous genetic human activities, structure related unstable environmental effects especially human intervene. Large scale genetic divergence

Phylogenetic studies on *A. cantonensis*

A. cantonensis is endemic in Asia, the Pacific Islands, the Caribbean Islands, USA, and Africa. However, endemic regions are now thought to be more widely distributed (Foronda et al., 2010);

The phylogeny inferred from cytochrome c oxidase subunitl (coxl) revealed three distinct lineages among *A. cantonensis* collected from Thailand, Hawaii, and Mainland China (Eamsobhana et al., 2010);

The spatial distribution of *A. cantonensis* was closely associated with the spread of the intermediate hosts, *Achatina fulica* in the Pacific Islands [Alicata, 1966], Mainland China [Lv et al 2009] and Brazil;

The partial coxl sequences were determined for 83 worms from 18 different geographical localities from Japan, Mainland China, Taiwan, and Thailand (Tokiwa et al, 2012).

值思

明辨

Phylogenetic studies on *A. cantonensis*

These phylogenetical studies emphasized the phylogenetic relationship although they used materials from different locations, but samples does not represent a population (Table below from Tokiwa et al, 2012), while phylogeographic study were carried out at the population level.

Locality	No. of individuals	Worm stage	Origins
Chiba, Chiba , Japan	15	Adult	10 Rattus norvegicus
Kawasaki, Kanagawa , Japan	3	L3	1 Limax marginatus
Yokohama, Kanagawa , Japan	4	Adult	1 Rattus norvegicus
Minato-ku , Tokyo , Japan	2	Adult	1 R. norvegicus
Hahajima Island, the OgasawaraIsland, Japan	8	L3	8 Achatina fulica
Chichijima Island, the Ogasawara Island, Japan	2	Adult, L1	2 R. rattus
Chichijima Island, the Ogasawara Island, Japan	6	Adult, L1, L3	Laboratory maintained
Sendai, Miyagi , Japan	4	Adult	2 R. norvegicus
Kanazawa, Ishikawa , Japan	4	Adult	1 R. rattus
Nagoya, Aichi , Japan	6	Adult	2 R. norvegicus
Amamioshima Island, the Nansei Islands, Japan	4	L1, Adult	2 R. rattus
Naha, Okinawa Island, the Nansei Islands, Japan	10	Adult	6 R. norvegicus
Nanjo, Okinawa Island , the Nansei Islands, Japan	1	L3	1 Achatina fulica
Taichung, Taiwan	4	Adult	3 R. norvegicus
Shenzhen, Guangdong, China	3	Adult	3 R. norvegicus
Wenzhou, Zhejiang, China	2	Adult	Laboratory maintained
Lianjiang, Fujian, China	3	Adult	Laboratory maintained
Bangkok, Thailand	2	L1	Laboratory maintained
	83		

值思

明辨

Angiostrongylus cantonensis samples (n = 83) used in the present study.

Objectives of the present study

- (i) To evaluate the evolving rates or resolution of Mitogenes ND2 and cytb for both the nematode and host, *Achatina fulica*, at intraspecific level;
- (ii) To assess the genetic homogeneity of this nematode and the host snail in South China area;
- (iii) Further, to elucidate population genetic structure of this nematiode and the host snail in south China, effect of vicariance, and possible population develop route by natural spread or human related transportation.

慎思 明辨

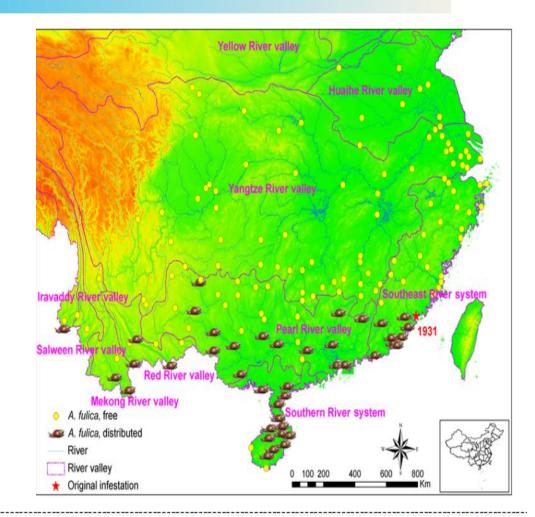
☞ Materials

The host of the parasite

The host we sampled is giant africn snail, Achatina fulica

明辨

马仃


順思

Materials

Reported distribution of Achatina fulica in China

► At present, *A. fulica* is known to occur in the province of Guangdong, Hainan, and Guangxi, in the southern areas of Yunnan and Fujian provinces and in one county of Guizhou province, unlike P. canaliculata, A. fulica occurs only south of 25° N latitude (Ref. Lv et al 2009).

日月

Materials

Parasites sampling

Angiostrongylus cantonensis collection

Hosts: Achatina fulica

Time: Jun to Nov, 2013

More than 20 samples of parasites were individually collected from different snail individuals at each sites except at HD where the prevalence is extremely low.

A. cantonensis (3rd larvae) in the course of ecdysis

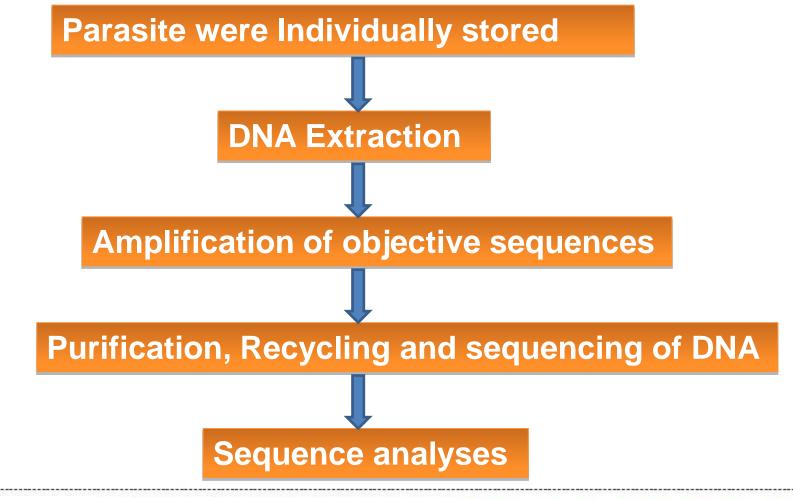
审问


明辨

马们

慎思

Methods— Locations of sampling


GZ1 (Other areas in Guangzhou, Guangdong), **GZ2** (SYSU-south, Guangzhou, Guangdong), ZH (**Zhuhai**, Guangdong), XM (Xiamen, Fujian), FCG (Fangchenggang, Guangxi), **HK** (Hekou, Yunnan), WC (Wenchang, Hainan), SY (Sanya, Hainan), **NT**(New Taipei), **TC**(Taizhong), HL(Hualian), KH (Gao Kiong).

博学 审问 慎思 明辨 笃行

Methods— Sample collection and treatment

Parasites were collected by routing methods

审问 慎思 明辨

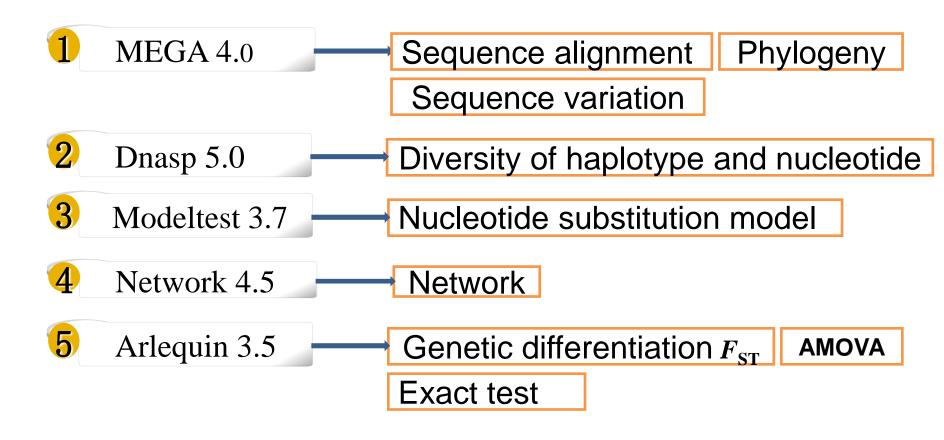
Methods

Primers of amplification of two genes

Primers used for PCR were designed according to the complete mitochondrial genomes of *A. cantonensis* (Genbank accession number NC013065.1) and *A. fulica* (Genbank accession number NC_024601.1)

Taxa	gene	Primer name	Sequence (5'-3')
	ND2	Ac-N2F	GAGGG AGTGT TAGGT GATGG TTATG
Angiostrongylu	ND2	Ac-N2R	CTCCT GGGCA AAGTA ACCAC TAAAG
s cantonensis	Cytb	Ac-CBF	GATTA CGGTT CAGAA AGGTG
		Ac-CBR	GGCAA ATACA CCCCA AACTT
	ND2	Af-N2F	ACGCA ATAAT AGTAG TTCTT
A chating fuliag		AfN2R	AACCC ACATC ATACA CCA
Achatina fulica	Cytb	AfCBF	TTACC CTTCT GGTTT CGG
		AfCBR	ACTGC CCTCA AAGTC TCA

慎思 明辨


马仃

审问

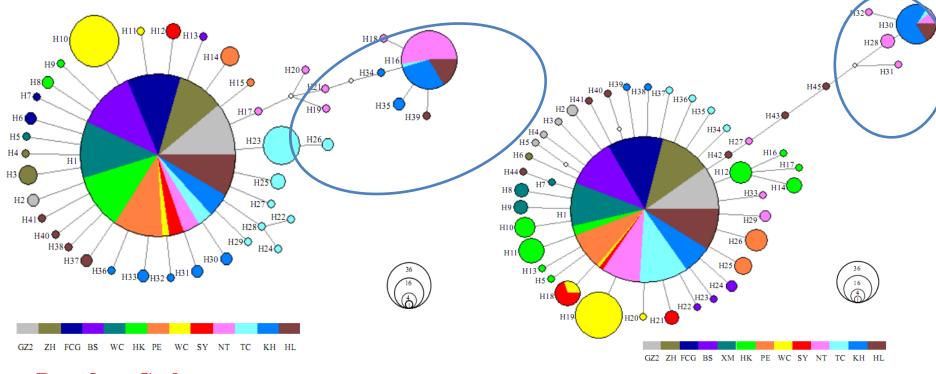
Methods

Softwares used for the present studies

值思

审问

明辨


Genetic diversity of Achintina fulica based on Cytb and ND2 gene sequences

		-				
Site	Abbr.		No.hapl otypes (<i>H</i>)	Haplotype diversity $(h \pm SD)$	No.haplotypes (H)	Haplotyp diversity(<i>h</i> SD)
Guangzhou 2	GZ -2	38	2	0.1024 ± 0.0649	5	0.2475 ± 0.0
Zhuhai	ZH	38	3	0.2802 ± 0.0868	2	0.0526 ± 0.0
Xiamen	XM	39	2	0.0513 ± 0.0481	4	0.3225 ± 0.0
Fangchenggang	FCG	40	- 3	0.1449 ± 0.0737	1	0.0000 ± 0.0
Baise	BS	40	2	0.0500 ± 0.0469	4	0.1910 + 0.0
Hekou	HK	40	-3	0.1449 ± 0.0737	9	0.8449 ± 0.0
Puer	PE	40	3	0.2679 ± 0.0843	3	0.5013 ± 0.0
Wenchang	WC	40	3	0.2679 ± 0.0843	4	0.2756 ± 0.0
Sanya	SY	13	2	0.3846 ± 0.1321	3	
New Taipei	NT	40	7	0.5910 ± 0.0631	8	0.5064 ± 0.0
Taizhong	ТС	40	10	0.7179 ± 0.0594	6	
Kaohong	KH	40	9	0.7410 ± 0.0489	4	0.5564 ± 0.0
Hualian	HL	40	3 7	0.5218 ± 0.0855	8	0.4346 ± 0.0
Total	IIL	488	41		45	

Cytb

ND2

Phylogenetic analyses of haplotypes based on sequences of cytb and ND2

Based on Cytb sequences

Based on ND2 sequences

Two diverged brances

Star shaped structure implys the existence of pupolation expansion

Genetic structure of Achintina fulica based on Cytb and ND2 gene sequences

	GZ-2	ZH	XM	FCG	BS	НК	PE	WC	SY	NT	TC	KH	HI
Z-2		*	*	*		*	*	*	*	*	*	*	*
н			*	*	*	*	*	*	*	*	*	*	*
M				*	*	*	*	*	*	*	*	*	*
CG						*	*	*	*	*	*	*	*
S						*	*	*	*	*	*	*	*
K							*	*	*	*	*	*	*
E								*	*	*	*	*	*
VC									*	*	*	*	*
Y										*	*	*	*
Т											*	*	*
С												*	*
Η													*
IL													

Genetic structure of Achintina fulica based on Cytb and ND2 gene sequences

Table 4 Statistics of analysis molecular variance (AMOVA between different populations base on cytb (and ND2)

Source of variation	Percentage of variation	P value
Among populations	40.60 (27.71)	0.00000 (0.00000)
Within populations	59.40 (72.29)	0.00000 (0.00000)
Total		

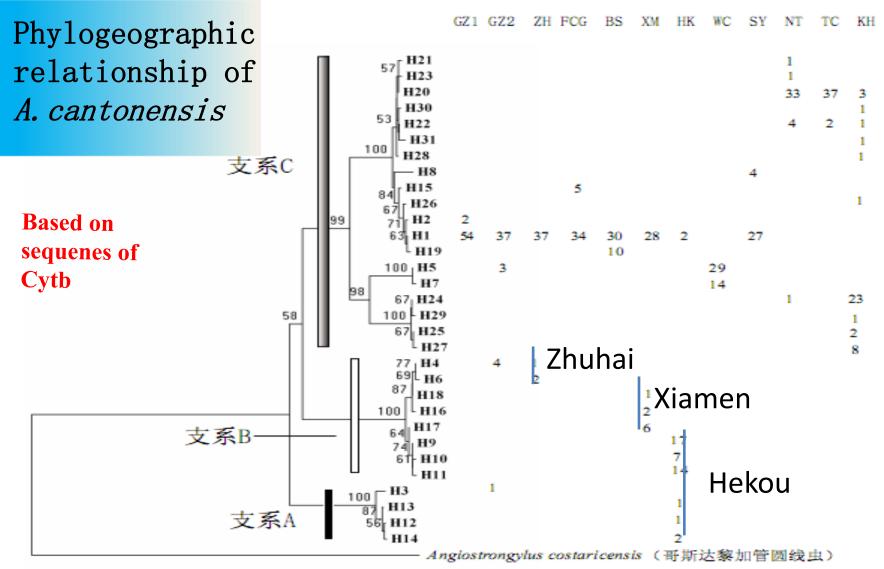
Certain percentages of variation are from among populations

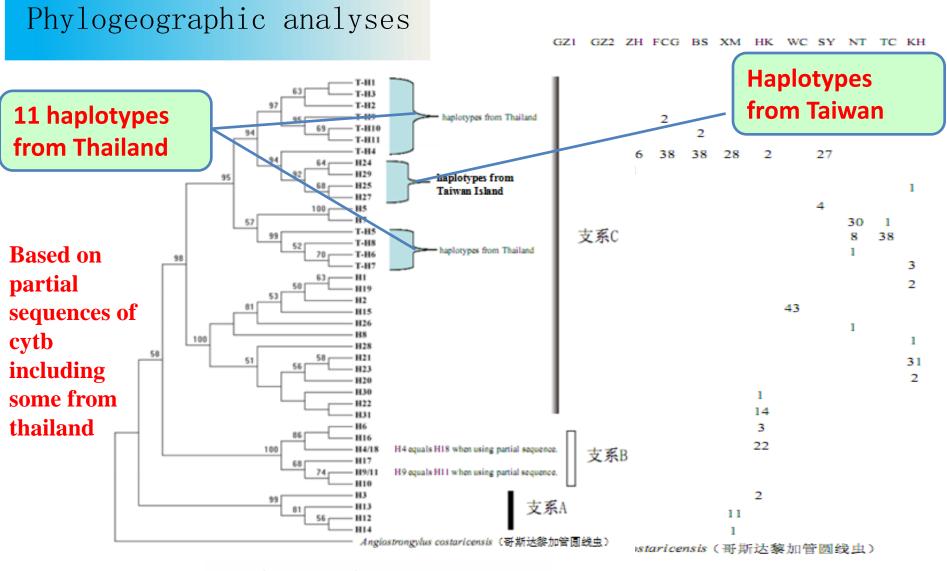
Genetic structure of Achintina fulica based on Cytb and ND2 gene sequences

Table 5 Tajima's *D* and Fu's *Fs* tests of variation of population of *Achintina fulica* based on sequences of *Cytb* and *N*D2

	Tajima	n'sD	Fu's Fs
	D	Р	Fs P
Total	-1.96911 (- 2.00727)	0.00100 (0.00110)	-27.21716 (- 0.00000 26.51680) (0.00000)

The population was deduced to have experienced historical demographical expansion.


Genetic Diversity of Angiostrongylus cantonensis


 Table 6 Genetic diversity of Angiostrongylus cantonensis based on Cytb and ND2 gene sequences

Cytb

ND2

Site	Abbr	No. samples (<i>N</i>)	No. haplotyp es (<i>H</i>)	Haplotype diversity($h \pm$ SD)	No.samples (N)	No. haplotypes (<i>H</i>)	Haplotype diversity ($h \pm$ SD)
Guangzhou 1	GZ-1	56	2	0.0701 ± 0.0461	56	1	0.0000 ± 0.0000
Guangzhou 2	GZ-2	45	4	0.3182 ± 0.0858	45	6	0.3919 ± 0.0901
Zhuhai	ZH	40	3	0.1449 ± 0.0737	40	3	0.1885 ± 0.0797
Xiamen	XM	37	4	0.4084 ± 0.0906	40	3	0.4449 ± 0.0672
Fangchenggang	FCG	39	2	02294 ± 0.0800	40	2	0.0974 ± 0.0621
Baise	BS	40	2	0.3846 ± 0.0698	40	2	0.0974 ± 0.0621
Wenchang	WC	43	2	0.4496 ± 0.0520	43	1	0.0000 ± 0.0000
Sanya	SY	31	2	0.2323 ± 0.0899	31	2	0.2323 ± 0.0899
New Taipei	NT	40	5	0.3154 ± 0.0914	40	4	0.4064 ± 0.0817
Taichong	TC	39	2	0.0999 ± 0.0635	39	2	0.0513 ± 0.0481
Kaohong	KH	42	10	0.6690 ± 0.0709	40	6	0.3974 ± 0.0958
Hekou	ΗK	44	7	0.7357 ± 0.0395	44	6	0.6543 ± 0.0520
Total		496	31		498	28	

0.05

Haplotypes from Taiwan

	GZ-1	GZ-2	ZH	XM	FCG	BS	НК	WC	SY	NT	ТС	КН
GZ-1		*	*	*	*	*	*	*	*	*	*	*
GZ-2	0.10571* (0.07275*)		*	*	*	*	*	*	*	*	*	*
ZH	0.06746 (0.06956*)	-0.00192 (-0.00559)		*	*	*	*	*	*	*	*	*
XM	0.26725* (0.32487*)	0.03378 (0.13506*)			*	*	*	*	*	*	*	*
FCG	0.11314* (0.03884)	0.07693* (0.05566*)				*	*	*	*	*	*	*
BS	0.22876* (0.00000)	0.08917* (0.05568*)					*	*	*	*	*	*
НК	0.87284* (0.94869*)	0.69908* (0.82410*)						*	*	*	*	*
WC	0.99418* (1.00000*)	0.75181* (0.81368*)							*	*	*	*
SY	0.14059* (0.15114*)	0.06237* (0.02952)								*	*	*
NT	0.87166* (0.89756*)	0.31517* (0.46004*)									*	*
ГС	0.98668* (0.99740*)	0.33798* (0.53175*)										*
KH	0.84372* (0.89636*)	0.58248* (0.73747*)	0.69297* (0.78096*)	0.55466* (0.64750*)	0.80932* (0.87642*)	0.81520* (0.87759*)	0.78505* (0.89663*)	0.78961* (0.87164*)	0.77115* (0.84686*)	0.75337* (0.82610*)	0.78771* (0.86143*)	

Table 7 Significance of Exact test between different populations base on cytb and ND2

Results--Genetic structure of A. <u>cantonensis</u>

Table 8 Statistics of analysis molecular variance (AMOVA between different populations base on cytb (and ND2)

Source of variation	Percentage of variation	P value
Between HK population and all other groups as a whole	67.59 (65.60)	0.08016 (0.08472)
Among populations	19.93 (24.28)	0.00000 (0.00000)
Within populations	12.48(10.12)	0.00000 (0.00000)
Total		

More than 2/3 of variation from btween HK population and other population as a whole

Variation is over 80% among different populations

Results of Neutrality test

Table 9 Tajima's *D* and Fu's *Fs* tests of variation of population of *A*. *cantonensis* based on sequences of *Cytb* and *ND2*

	Tajin	na's D	Fu'	Fu's Fs				
	D	Р	Fs	Р				
HKW	-0.47781(-0.12052)	0.37650(0.53960)	20.30381(19.05730)	0.97080(0.97170)				
HK	-0.78714 (-1.93366)	0.23030 (0.00870)	19.65693 (6.17550)	<mark>0.99990 (0.96890)</mark>				
Total	0.51692 (0.70941)	0.77640 (0.82270)	29.37733 (24.00816)	0.98050 (0.97750)				

Tests for both Hekou population and that outside Hekou revealed insignificant Tajima's *D* and *Fs* values, which implys that A. cantonensis did experience demographical expansion.

Discussion____Achatina fulica

1. Genetic diversity and historical demagraphy of *Achatina fulica*

• *A. fulica* population in Taiwan generally have higher genetic diversity and were detected to have experience historical population expansion.

Re: In general, this snail was considered introduced from Taiwan via Xiamen.

• *A. fulica* population in Hekou area, Yunnan Province with high genetic diversity

Re: The snail population in Hekou area might be artificially introduced or migrated naturally from Southeast countries, such as Vietnam.

Discussion____Achatina fulica

2. Genetic structure of *Achatina fulica*

A. fulica population in Taiwan is comprised by two slightly differentiated groups, with genetic differentiation, was considered as nonrandom mating population.

Re: The snail might be introduced from different sources, one of which was lately introduced to mainland China.

Both high mountain and water separation might have complicated impact to the genetic separation and differentiation.

A. *fulica* populations in south part of mainland China were also found to be with genetic differentiation and are not random mating population due to the isolation of water and high mountains.

Discussion Angiostrongylus cantonensis

3. The origin of *A*. *cantonensis* in southean mainland China.

Hekou, Yunan Province might be the origin or at least one of the origins of *A. cantonensis* in China.

Re: *A. cantonensis* population in Hekou area have obvious higher genetic diversity than other regional populations.

It was reflected on the phylogeographic relationship (based on cytb gene sequence) because some of haplotypes collected from Hekou formed a clade near the bottom although some of its members are also appears in other clades.

Drozdz et al (1975) suggested that south east asian contries are the origin of *A. cantonensis* while Hekou area borders on Vietnam.

Tokiwa et al (2012) proposed that A. cantonensis was multiple origin based on sample from different areas including some parts in China.

I. For Achatina fulica

> With high genetic diversity, nonrandom mating population, but without significant structures,.

> Population experienced demographical expansion.

2. For Angiostrongylus cantonensis

Hekou area in Yunnan Province is with higher genetic diversity than other areas, nonrandom mating population, but without significant structures.

> Population did not experience demographical expansion.

3. Role of *Achatina fulica* in the spead of *Angiostrongylus cantonensis* is still unclear, needs sample from more locations.

