World Congress on Breast Cancer August 1-3, 2015, Birmingham, UK

Multiparameter characterization of breast carcinoma: subgross, microscopy, proteins, and genes

Tibor Tot Falun, Sweden

Radiological – pathological correlation is essential in diagnosing breast carcinoma

The radiology images are courtesy of Prof Laszlo Tabár, DRs Nadja Lindhe and Mats Ingvarsson

Large section histology

Breast carcinoma is a lobar disease in the meaning that the simultaneously or asynchronously appearing, often multiple, in situ and/or invasive tumor foci originate in a single lobe of one breast. (The theory of the sick lobe)

- Tot T: Correlating the ground truth of mammographic histology with the success or failure of imaging. Technology In Cancer Research and Treatment, 4(1):23-8; 2005,
- Tot T: DCIS, cytokeratins and the theory of the sick lobe. Virchows Arch 447:1-8; 2005,
- Tot T: The theory of the sick lobe and the possible consequences. Int J Surg Pathol 15(4:) 369-75, 2007

Unifocal luminal B invasive breast carcinoma without diffuse lobar DCIS Unifocal luminal B invasive breast carcinoma with diffuse lobar DCIS

E X T E N T

When describing malignant lesions in the breast, the following morphologic parameters should be listed (independent of the used imaging method):

- the <u>distribution</u> of the lesions (as unifocal, multifocal or diffuse) separately for invasive and in situ lesions,
- the <u>extent</u> of the disease (representing the whole area including all the invasive, in situ and intravascular malignant structures),
- the <u>size</u> of the tumor corresponding to the largest diameter of the lagest individual invasive tumor focus,

• evidence for intratumoral or intertumoral heterogeneity.

Invasive breast carcinoma NST

Invasive breast carcinoma NST

Advanced invasive breast carcinoma

Life expectancy of screen-detected invasive breast cancer

- Age matched invited women with and without screen detected cancer (858)
- 6 year shorter survival in those with s.d.c.
- No difference in survival for those <15 mm comprising 40% of s.d.c.
- >=15 mm: 6 12 year shorter survival, depending on tumor size

Otten JDM, Broeders MJM, Den Heeten GJ et al. Life expectancy of screen-detected invasive breast cancer patients compared with women invited to the Nijmegen Screening Program. Cancer 2010:116-586-91.

Carcinomas by detection mode and tumor size, Falun 1996-2003

	Screening	Outside screening	Interval	Follow- up	Refusers	Sum	
In situ	18% (130)	<mark>8%</mark> (52)	8% (24)	14% (6)	0% (0)	12% (212)	
1 – 9 mm	67%	<mark>8%</mark> (51)	14% (42)	35% (15)	14% (2)	150%	
10 – 14 mm	23% (167)	11% (69)	18% (52)	33% (14)	14% (2)	18% (304)	
15 – 19 mm	16% (123)	17% (106)	18% (55)	2% (1)	14% (2)	17% (287)	
20-29 mm	11% (81)	26% (163)	26% (73)	8% (4)	42% (6)	19% (327)	
30 + mm	6% (44)	23% (140)	16% (47)	6% (3)	14% (2)	14% (236)	
Sum	740 2unknown	620 41unknown	297 2unknown	43	14	1725 11unknown	
Screening + interval - 78%							

45 unknown size, 11 unknown detection mode

Molecular characteristics of early vs more advanced invasive breast carcinomas

	Early BC < 15 mm	Advanced BC >= 15 mm	Total	P-value
Basal-like	5.9% (12/203)	15.1% (48/317)	11.5% (60/520)	= 0.0035
ER negative*	12.3% (42/342)	18.2% (93/510)	15.8% (135/852)	= 0.0238
Tripple negative	6.4% (22/341)	10.5% (53/507)	8.8% (75/848)	= 0.0193
Her-2 positive	8.9% (31/347)	13.3% (68/511)	11.5% (99/858)	= 0.0917
Grade 3	12.9% (46/355)	29,5% (151/511)	22.0% (197/866)	< 0.0005
Total	41.5% (362/873)	58,5% (511/873)	100% (873/873)	

Kahán Zs., Tot T., eds. Breast Cancer, a Heterogeneous Disease Entity: The Very Early Stage. Springer 2011

Cumulative survival in 499 invasive breast carcinoma cases by distribution of the invasive component, Falun, 1996-1998

Tot et al. Breast cancer multifocality, disease extent, and survival. Hum Path 2011

Alice P Chung, Kelly Huynh, Travis Kidner, Parisa Mirzadehgan, Myung-Shin Sim, Armando E Giuliano. Comparison of Outcomes of Breast Conserving Therapy in Multifocal and Unifocal Invasive Breast Cancer (J Am Coll Surg 2012;215: 137–147. © 2012 by the American College of Surgeons)

164 MF tumors ("2 or more distinct tumors in a single incision or segmentectomy") Only breast conserving surgery. Median follow-up 112 months.

Results: patients in the MF group had

higher 10-year LR (0.6% vs 6.1%, p<0.001) and lower 10-year DFS (97.7% vs 89.3%, p<0.001) and OS (98.4% vs 85.8%, p<0.001).

On multivariable analysis, multifocality was independently significantly associated with local recurrence-free survival (LRFS), DFS, and OS.

Study	Weight (%)	Hazard Ratio [95% CI]	
Boyages 2010	14.8	1.35 [0.62 to 2.95]	
Chung 2012	12.3	10.57 [4.20 to 26.60]	
Joergensen 2008	28.4	1.05 [0.93 to 1.19]	•
Litton 2007	12.2	1.57 [0.62 to 3.98]	
Pedersen 2004	26.8	1.03 [0.82 to 1.30]	+
Ustaalioglu 2012	5.5	4.83 [0.93 to 25.00]	
Heterogeneity: With a 82 Test for overall effect: Z = 2.29 (Pe SUDStanti	orse prog al inter-stu	nosis, howeve dy heterogen	er, 1 10 100 Eity Favors unifocal
Heterogeneity: with a w Test for overall effect: Z = 2.20 (F Substanti ² limits the precis	orse progi al inter-stu e determir	nosis, howeve dy heterogen nation of incre	er, To 10 To 100 To
Heterogeneity: With a 80 Test for overall effect: Z 2 29 (A SUDStantia ² limits the precis	vorse progi al inter-stu e determin _{Weight (%)}	nosis, howeve dy heterogen nation of incre Hazard Ratio [95% CI]	er, i 10 100 eity Favors unifocal ased risk.
Heterogeneity: With a.s. Test for overall effect: Z = 2.20 SUDStantia ² Intest talot staticing the association b <u>Study</u> Chung 2012	vorse progi al inter-stu e determin Weight (%) 21.9	nosis, howeve dy heterogen nation of incre Hazard Ratio [95% CI] 5.86 [2.58 to 13.33]	er, i 10 100 eity Favors unifocal ased risk.
Heterogeneity: With a sw Test for overall effect: Z = 2.29 (F SUDStantia ² Encreting the association b Internet showing the association b Study Chung 2012 Joergensen 2008	vorse progi al inter-stu e determin <u>Weight (%)</u> 21.9 29.8	nosis, howeve dy heterogen nation of incre Hazard Ratio [95% CI] 5.86 [2.58 to 13.33] 1.16 [1.03 to 1.31]	er, ity Favors unifocal ased risk.
Heterogeneity: With a 82 Test for overall effect: Z = 2.29 (F SUDStantia ² Immits the state of the association of Substantia <u>Study</u> Chung 2012 Joergensen 2008 Litton 2007	vorse progi al inter-stu e determin <u>Weight (%)</u> 21.9 29.8 23.3	hosis, howeve dy heterogen hation of incre Hazard Ratio [95% CI] 5.86 [2.58 to 13.33] 1.16 [1.03 to 1.31] 0.86 [0.42 to 1.78]	er, i 10 100 eity Favors unifocal ased risk.
Heterogeneity: With a sw Test for overall effect: Z = 2.29 (F SUDStantia ² Intrastralat showing the association b Intervention of the association b Study Chung 2012 Joergensen 2008 Litton 2007 Ustaalioglu 2012	vorse progr al inter-stu e determin <u>Weight (%)</u> 21.9 29.8 23.3 25.0	nosis, howeve dy heterogen ation of incre Hazard Ratio [95% CI] 5.86 [2.58 to 13.33] 1.16 [1.03 to 1.31] 0.86 [0.42 to 1.78] 3.03 [1.65 to 5.56]	er, eity Favors unifocal ased risk.
Heterogeneity: With a 82 Test for overall effect: Z 229 (F Substantia imits the precision Study Chung 2012 Joergensen 2008 Litton 2007 Ustaalioglu 2012 Total	vorse progr al inter-stu e determin <u>Weight (%)</u> 21.9 29.8 23.3 25.0 100.0	nosis, howeve dy heterogen ation of incre Hazard Ratio [95% CI] 5.86 [2.58 to 13.33] 1.16 [1.03 to 1.31] 0.86 [0.42 to 1.78] 3.03 [1.65 to 5.56] 1.96 [0.94 to 4.12]	er, i 10 100 eity Favors unifocal ased risk.

Fig. 3 Forrest plot showing the association between multifocality and disease-free survival

Francisco E et al. Effect of multifocality and multicentricity on outcome in early stage breast cancer: a systematic review and meta-analysis. Breast Cancer Res treat 2014

Invasive tumor focality by St Gallen 2013 molecular phenotypes, Dalarna County, 2008-13

Tot T. Breast Cancer Subgross MorphologicalParameters and Their Relation to Molecular Phenotypes and Prognosis. TJOP 2014;00:1–8 DOI: 10.13032/tjop.2052-5931.100106.

	LA	LB	HER2	TN	Total	
U	64.5% (267)	56.6% (294)	43.8% (14)	6		
MF	30.4% (126)	36.3% (189)	56.2% (18)	3		
D	5.1% (21)	7.1% (37)	0	1		
Total	100% (414)	100% (520)	100% (32)	1(A	HAN
	LB HER2 -	LB HER2+	HER2	. 0	M	NIXY
U	56.6% (249/440)	56.2% (45/80)	43.8% (14/32)		NU	Alter
MF	35.9% (158/440)	38.9% (31/80)	56.2% (18/32)	51	LC	And & The
D	7.5% (33/440)	5.0% (4/80)	0	12.3	VO	60 5
Total	100% (440/440)	100% (80/80)	100% (32/32)	HER2 G	ene-protein as	say, tricolor B-DISH method

Unifocal invasive breast carcinoma

Multifocal invasive breast carcinoma

Cumulative survival in 499 invasive breast carcinoma cases by distribution of the invasive component, Falun, 1996-1998

Tot et al. Breast cancer multifocality, disease extent, and survival. Hum Path 2011

Diffuse invasive cancer

- **5% of all BCs** (5.6%, 59/1059 cases),
- 75% gives clinical signs,
- 55% are architectural distortion on the mammogram (55.9% 33/59 cases)

Diffuse invasive carcinomas

- 75% are lobular,
- 98% are ER positive,
- Rarely HER2 positive (6.7%, 4/59)
- 90% are grade 2, **10% grade 3**

 25% of the patients with diffuse lobular cancer and 50% of those with diffus ductal cancer died of the disease (series 1996-98).

Tot T, Int J Breast Cancer, 2012

Diffuse in situ cancer

≥24% of all cancers >Large (extensive), > 40 mm > High grade > Occypying the large ducts > A single lactiferous duct >Lobar ➢ Contiguous

Mammographic – ultrasound – MRI – large-section correlation: basal – like cancer of the breast

Mammographic appearance	Basal phenotype	Histological lesion distribution	Tumor size	10-year risk of BC death
Architectural distortion 4.8% (62/1280)	+/-	Diffuse invasive		42.3%
Casting calcifications 6.1% (78/1280)	+/-	Diffuse aggregate		27.7%
		Multifocal (36.0%)		15.6%
	Basal like		15 mm + (83%)	22.7%
Circular mass	(22%)	Unifocal (64.0%)	<15 mm (17%)	1.9%
30.9% (396/1280)		Multifocal (31.1%)		19.1%
	Non-basal like (78%)		15 mm + (56.5%)	5.2%
		Unifocal (68.9%)	<15 mm (43.6%)	1.9%
Stellate mass	+/-	Multifocal (34.5%)		14.3%
45.6% (583/1280)	+/-	Unifocal (65.5%)		9.6%
Powdery calcifications 2.1% (27/1280)				5.9%
Crushed stone like calcifications 10.5% (134/1280)				3.9%

Abstract P4-03-07: RA Smith, WY-Y Wu, L Tabar, SL-S Chen, AM-F Yen, SW Duffy, T Tot, SY-H Chiu, JC-Y Fann, TH-H Chen. **The contribution of mammographic appearance, basal-like phenotype, and disease extent to prediction of breast cancer death**. Cancer Research 12/2013; 73(24 Supplement):P4-03-07-P4-03-07. DOI:10.1158/0008-5472

Breast cancer pathology - a manifesto for optimal care

The 10 essential / obligatory parameters

- **Tumour type** (according to the actual WHO classification)
- Tumour size / disease extent
- **Tumour grade** (Nottingham histology grade by Elston and Ellis)
- Lymph node status
- Operative margins
- Peritumoral vascular invasion
- Multifocality/centricity
- Hormone receptor status (ER/PR)
- HER2 status
- Ki67 labelling index

In addition, these services are likely to be needed in future:

- Gene profiling
- Biobanking

Conclusion:

Molecular classification of breast cancer is a powerful tool but gains in power when combined with conventional subgross morphological parameters.

