Faculty of Science Discovering for tomorrow

reate

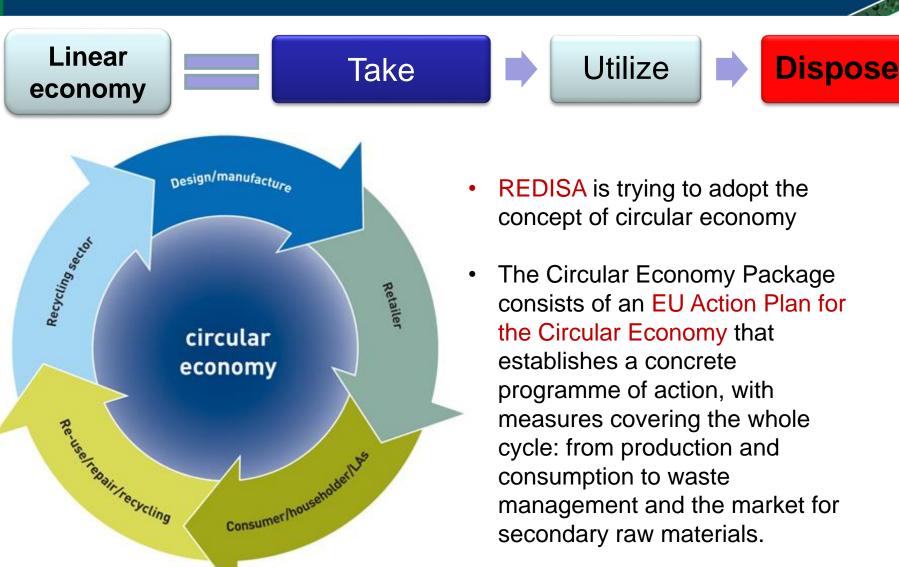
Identification and composition of compounds and petroleum fractions of oils recovered from waste tyres

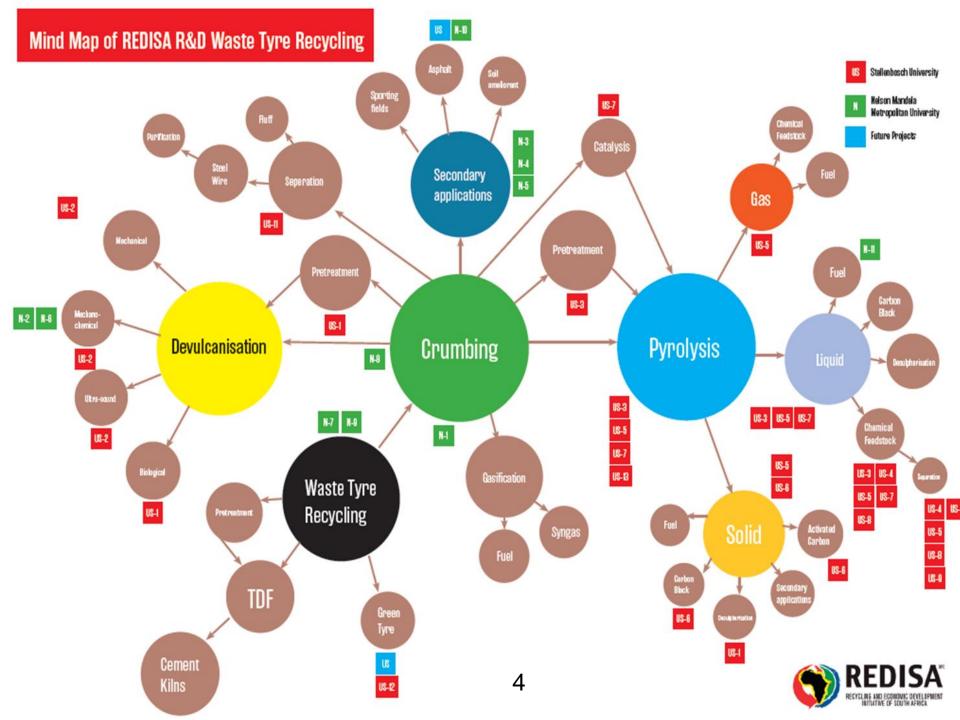
By: PC Tsipa

Supervisor: Dr PS Hlangothi Co-supervisors: Prof B Zeelie, Dr N Mama & Dr M Phiri

Introduction

- Primary resources are exploited as there is an increase in demand to improve technology
- A tyre is one of the most engineered part of a car with natural rubber and crude oil being the primary resources
- The complex nature of a tyre makes it hard for tyres to be disposed which causes:
- Increase in landfills, abandoned tyres
 and some tyre are burnt for heat




Saudi Arabia – Kuwait city

Introduction...

Recycling and Economic Development Initiative of South Africa

Literature review

- One of the ways to recycle tyres is the use of pyrolysis
- Pyrolysis is the process whereby a material is heated in the absence of oxygen
- The first type of pyrolysis was performed in South America fertility of the soil
- Tyre pyrolysis produces three products:

Literature review...

- Studies have shown that tyre pyrolysis process is a non-conventional method
 - Heterogeneity of the products therefore make it difficult to utilize further
 - High sulphur content
- Pyrolysis oil is very unstable:-

- Is not consistent process meaning it produces difference products every time.
- Consumes energy

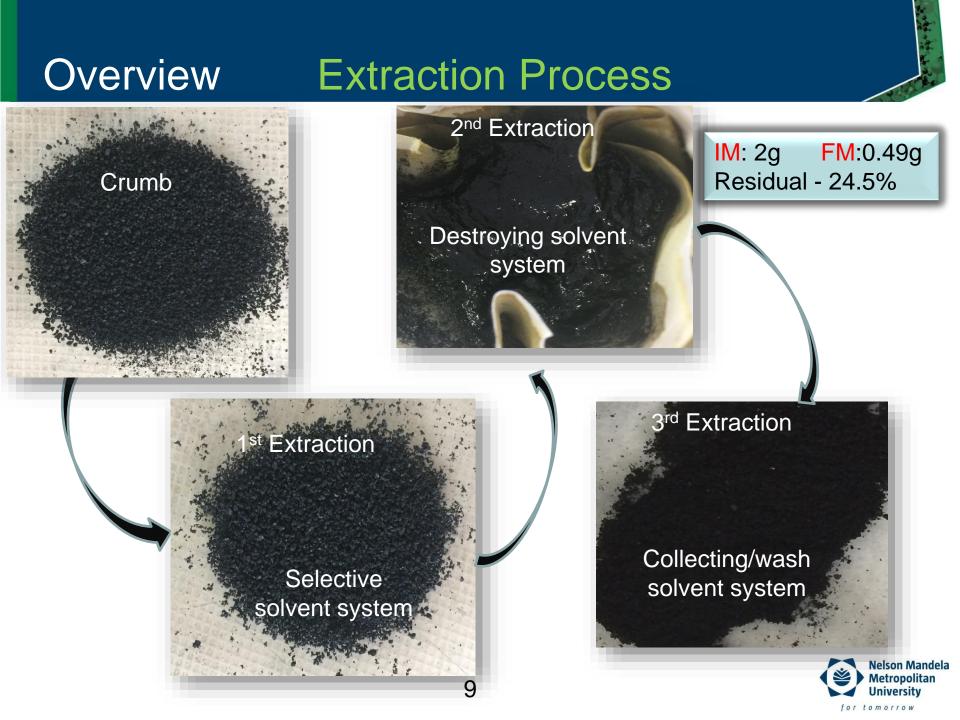
Aims and Objectives

<u>Aim</u>

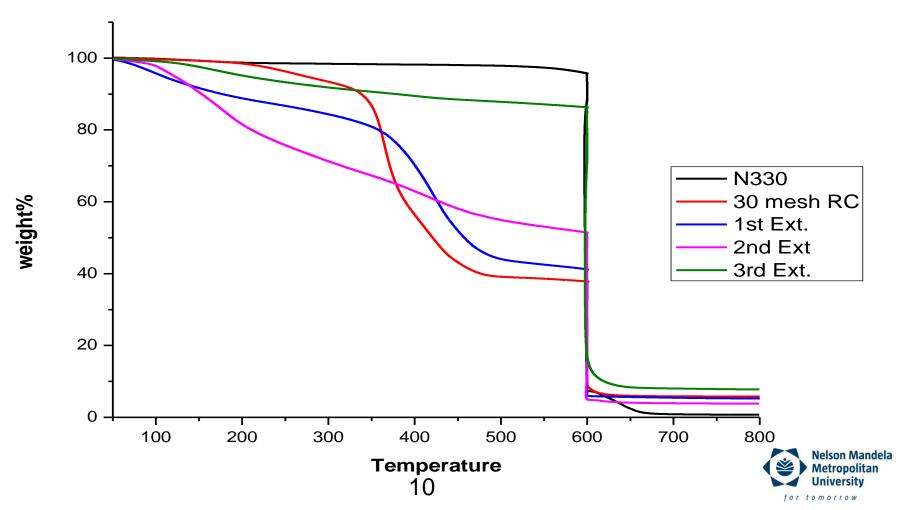
Develop an alternative chemical degradation method for pyrolysis and attempt to produce fuel from the tyre derived oil.

Objectives

- Like pyrolysis three products are produced: gas, solid and liquid
- Chemical reaction at room temperature
- Separate the oils based on their molecular weight by using different solvent systems


 able to utilize further
- Low sulphur content
- Oil must be stable
- Study the quality of oils
- Attempt to produce fuel

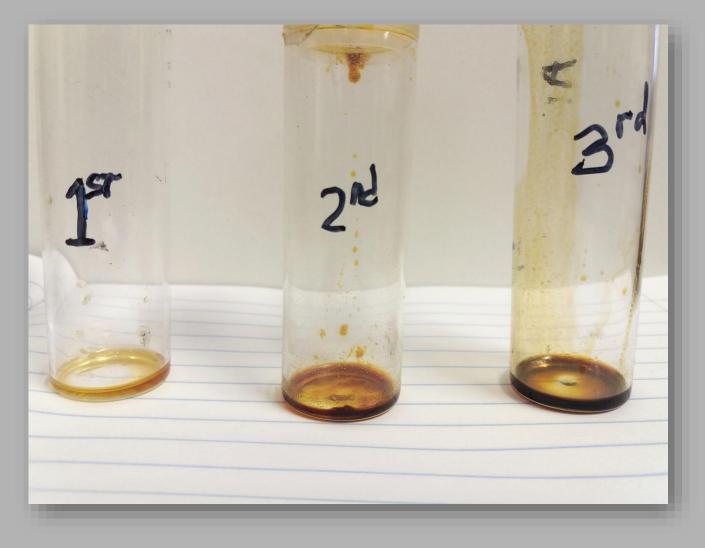
Overview



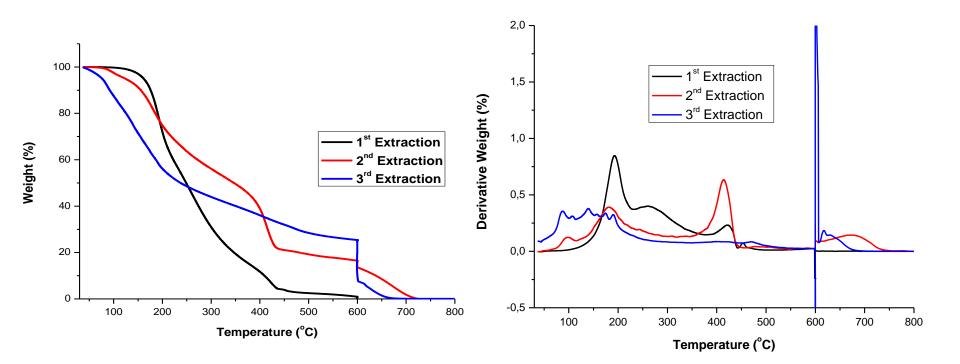
for tomorrow

Overview: Solid product (Char)

TGA analysis comparing Carbon black, rubber crumb with extraction residual



Overview: Gas product



Overview: Liquid products

TGA & DTG analysis comparing extracted oils from rubber crumb

This technique was performed to Identify and Quantify the compounds present in the extracted oil

HP 5890 series II Hewlett packet GC-MS system (Agilent, Midland, Canada) coupled to Mass spectrometric detector (Agilent, Palo Alto,

CA)

Oven:

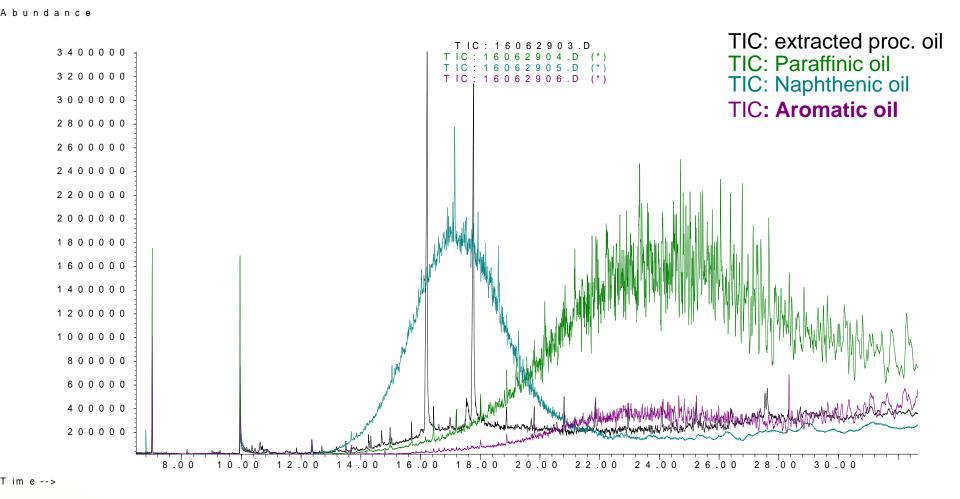
The inlet head pressure of 348 kPa was used under constant flow mode (flow rate of 1.20 mL/min, linear velocity of 27.9 cm/s)

Injection program:

1ul volume of the clean extract was then injected at into the split/splitless injector operated at 300 °C using split 1:20

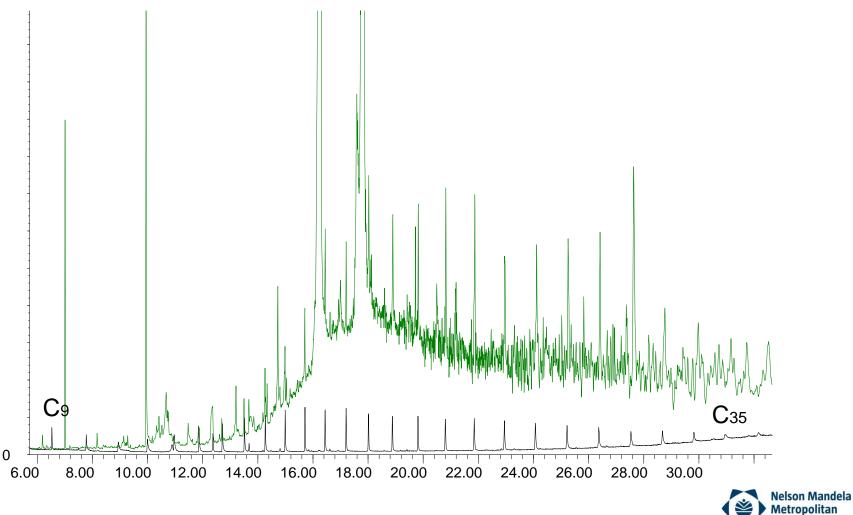
Column:

An apolar capillary column with dimensions: 60 m × 0.18 mm i.d. × 0.10 µm d_f Rxi-5 Sil-MS (Restek, Pann Eagle Park,CA,USA)


MS:

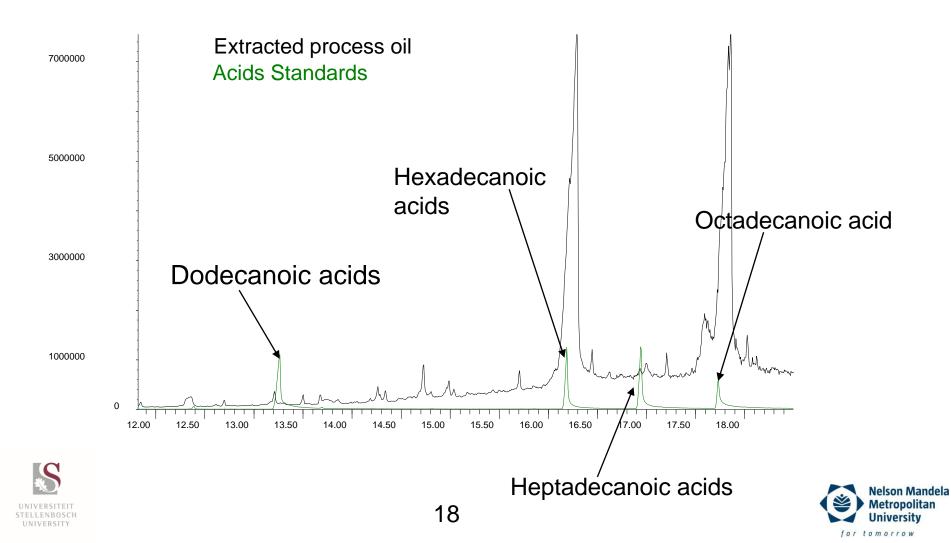
The transfer line to the MS was kept at 280 °C and the MS was operated in full scan mode from **35 to 500** *m/z* at a scan rate of 3.15 scans/sec with standard electron ionisation energy of 70 eV. The electron multiplier (EM) voltage was 1 188 V.

Composition of the oils: GC-MS



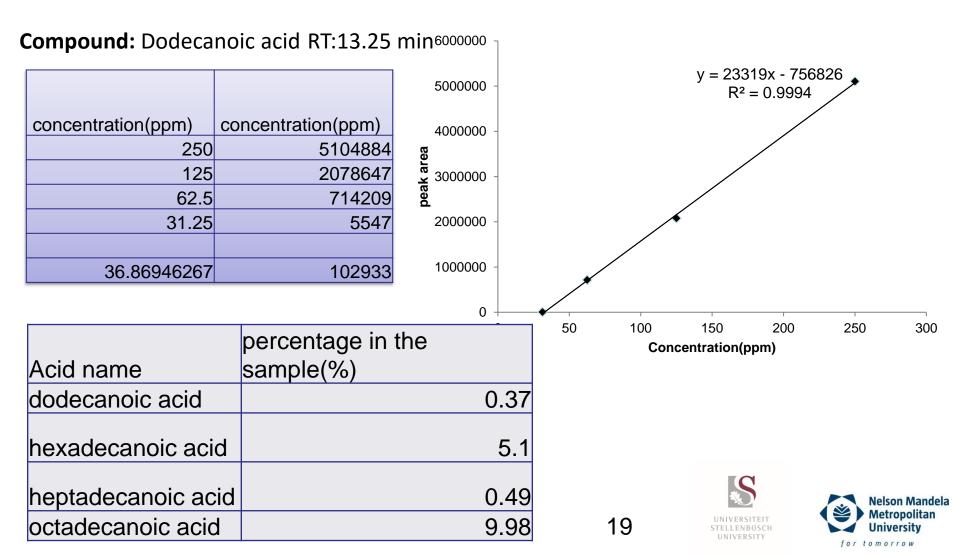
GC-MS analysis: External std. method for identification of hydrocarbons

Extracted Process oil Hydrocarbon Standards

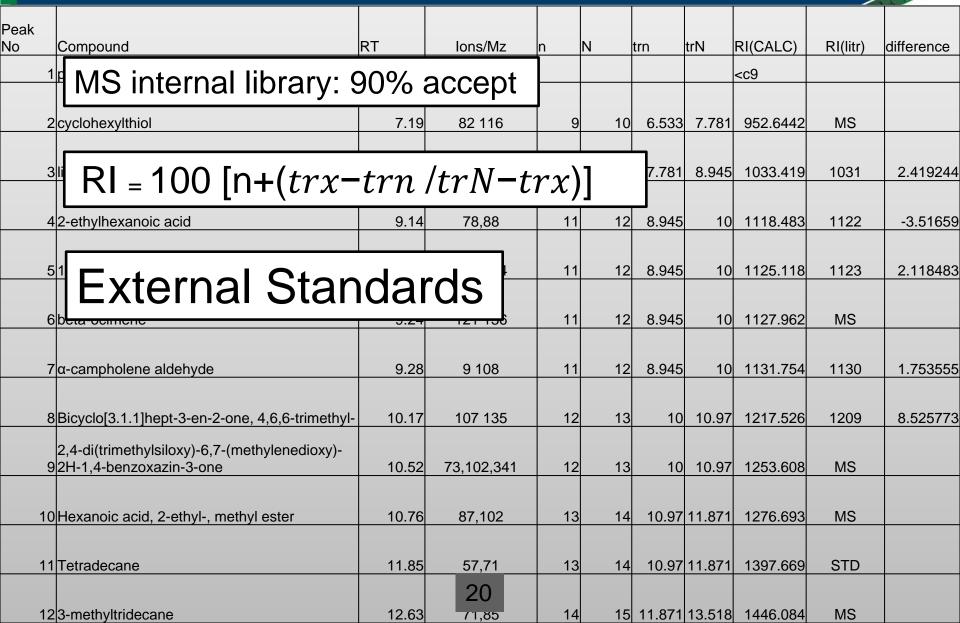


University

for tomorrow


GC-MS analysis: External std. method and quantification of the acid in the extracted oil

Abundance



Calibration curves for quantification

Quantification of the Market value Acids identified from the oil

Compounds identified

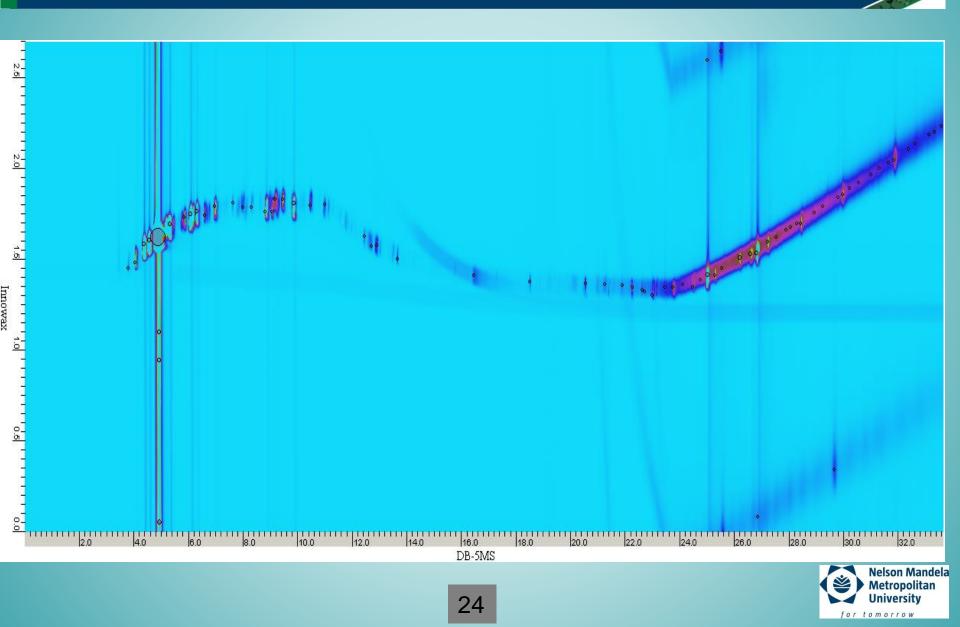
Compounds identified

あったった

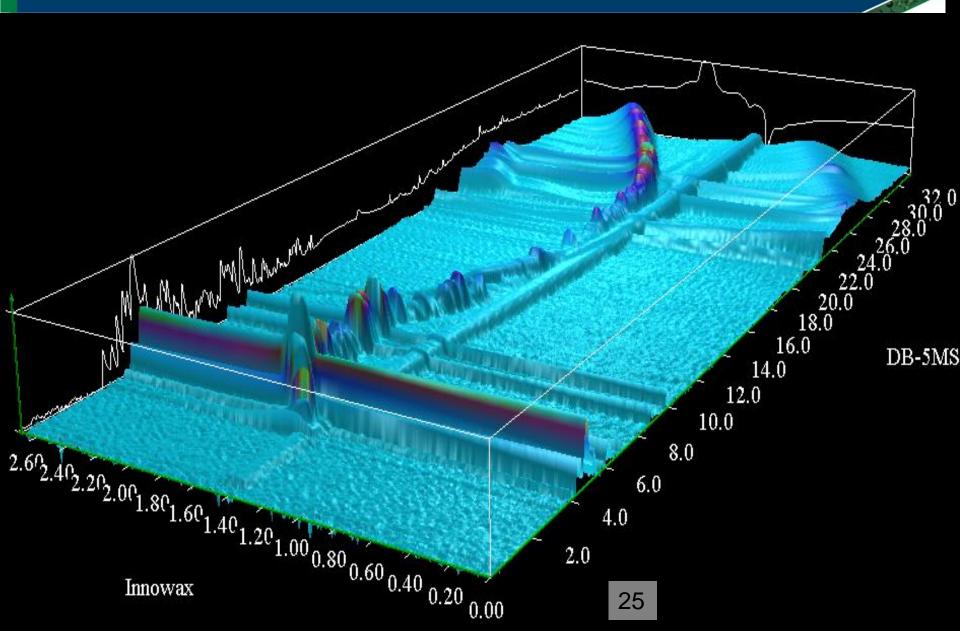
1.0								19	
Peak No	Compound	RT	lons/Mz	n N	trn	trN	RI(C	ALC)	RI(litr)
	1 p-xylene`	6.19	91 106				<c9< td=""><td></td><td></td></c9<>		
	2 cyclohexylthiol	7.19	82 116	9	10	6.533	7.781	952.6442	MS
	3 limonene	8.17	93 136	10	11	7.781	8.945	1033.419	1031
	42-ethylhexanoic acid	9.14	78,88	11	12	8.945	10	1118.483	1122
	51,2,3,5-tetramethylbenzene	9.21	119 134	11	12	8.945	10	1125.118	1123
	6 beta-ocimene	9.24	121 136	11	12	8.945	10	1127.962	MS
	7α-campholene aldehyde	9.28	9 108	11	12	8.945	10	1131.754	1130
	8 Bicyclo[3.1.1]hept-3-en-2-one, 4,6,6-trimethyl-	10.17	107 135	12	13	10	10.97	1217.526	1209
	92,4-di(trimethylsiloxy)-6,7-(methylenedioxy)-2H-1,4-benzoxazin-3-one	10.52	73,102,341	12	13	10	10.97	1253.608	MS
	10 Hexanoic acid, 2-ethyl-, methyl ester	10.76	87,102	13	14	10.97	11.871	1276.693	MS
	11 Tetradecane	11.85	57,71	13	14	10.97	11.871	1397.669	STD
	123-methyltridecane	12.63	71,85	14	15	11.871	13.518	1446.084	MS
	13 pentadecane	12.69	57,71	14	15	11.871	13.518	1449.97	STD
	14 Dodecanoic acid	13.2	57,73	14	15	11.871	13.518	1480.692	STDS
	15 Hexadecane	1251	57,71	• • • • •	15	11.871	13.518	1499.514	STDs
	16 Heptadecane b ² 2 COMPOUND	27		n+1+1 <i>(</i>		13.518	14.275	1799.339	STDs
	17 Pentadecane, 2,6,10,14-tetramethyl-					13.518	14.275	1801.982	MS
	15 Hexadecane 16 Heptadecane 17 Pentadecane, 2,6,10,14-tetramethyl 18 tetradecanoic acid 19 octadecane	14.72	60,75		19	14.275	15.996	1825.857	MS
						14.275	15.996	1841.546	STDs
	20 Hexadecane, 2,6,10,14-tetramethyl-	15.04	57,71	19	20	14.996	15.996	1904.4	MS
	21 anthracene	15.18	178	19	20	14.996	15.996	1918.4	MS
	22 nonadecane	15.7	57,71	19	20	14.996	15.996	1970.4	STD
	23 Hexanoic acid	16.2	60,73	20	21	15.713	16.44	2066.988	MS
	24 eicosane	16.44	57,71	20	21	15.713	16.44	2100	STD
	253,6-dimethyl phenanthrene	16.83	189 206	21	22	16.444	17.207	2150.59	MS
	25 heptadecanoic acid	16.93	57 113	21	22	16.44	17.207	2163.885	STD
	2610,18-Bisnorabieta-8,11,13-triene	16.99	143 227	21	22	16.44	17.207	2171.708	MS
	273,3,5,5-TETRAMETHYL-1,7-S-HYDRINDACENEDIONE (indacene)	17.02	143 227	21	22	16.444	17.207	2175.491	MS
	282,7-Dimethylphenanthrene	17.04	191 206	21	22 22	16.444 16.444	17.207	2178.113	MS
	29 heneicosane 30 pyrene	17.21 17.35	57,71 125 202	21	22	16.444	17.207 18.885	2200.393 2208.522	STD MS
	31 diphenyl sulphoxide	17.35	137 202	22	23	17.207	18.885	2208.522	MS
	32 oleic acid	17.59	55,69	22	23	17.207	18.885	2222.825	MS
	33 octadecanoic acid	17.84	73 284	22	23	17.207	18.885	2237.723	STD
	34 heptadecane	18.03	57,71	22	23	17.207	18.885	2248.749	STD
	35 docasane	18.03	57,71	22	23	17.207	18.885	2249.046	STD
	36 tricosene	18.08	69,97	22	23	17.207	18.885	2252.026	STD
	37 heptadecane	18.9	57,71	22	23	17.207	18.885	2300.894	STD
	38 eicosanoic acid	19.5	55,73	24	25	18.885	19.813	2466.272	MS
	39 Hexanedioic acid, bis(2-ethylhexyl) ester	19.7	57 129	24	25	18.885	19.813	2487.823	MS
	40 tetracosane	19.82	57,71	24	25	18.885	19.813	2500.754	STD
	411-phenanthrene ,carboxylic acid	20.5	239 285	24	25	18.885	19.813	2574.03	MS
	42 eicosane	20.82	57,71	25	25	19.813	20.807	2601.308	STD
	43 isooctyl phthalate	21.19	149 197	26	26	20.807	21.854	2636.581	MS
	44 tetracosane	21.87	57,71	26	27	20.807	21.854	2701.528	STD
	45 hexacosane	21.88	57,71	26	27	20.807	21.854	2702.483	STD
	46 heptacosane	22.97	57,71	27	28	21.854	22.949	2801.918	STD
	47 C29	24.12	57,71	28	29	22.949	24.071	2904.367	STD
	48 C30	25.26	57,83	29	30	24.071	25.221	3003.391	STD
	49C31	26.42	57,71	30	31	25.221	26.37	3104.352	STD
	50 C32 21	27.64	57,71	31	32	26.37	27.537	3208.826	STD
	51 C33	28.77	57,71	32	33	27.537	28.681	3307.78	STD
	52 C34	29.78	57,97	33	34	28.681	29.821	3396.404	STD
	53 C35	30.17	57,97	34	35	29.821	30.948	3430.967	STD

GC analysis comparing tyre derived oil

22



GC analysis comparing tyre derived oil


あったった

	<u> </u>						
Peak No Compound	RT	lons/Mz	RI(Cal)	RI(lit)	A	E	F
1 p-xylene`	6.19	91 106			d	nd	nd
			952.644				
2 cyclohexylthiol	7.19	82 116	2		d	nd	nd
3	7.16				nd	nd	d
	7.61				nd	nd	d
	7.74				nd	nd	d
			1033.41				
3limonene	8.17	93 136	9		d	d	d
			1118.48		.		1.
42-ethylhexanoic acid	9.14	78,88	3		d	nd	nd
51,2,3,5-trimethylbenzene	9.21	119 134	1125.11		d	d	nd
	9.21	119 134	1127.96		d	d	
6beta-ocimene	9.24	121 136	2		d	d	nd
	0.21	121 100	1131.75		<u> </u>	<u> </u>	
7 alpha-campholene adehyde	9.28	91 108	4		d	d	d
			1217.52				
8Bicyclo[3.1.1]hept-3-en-2-one, 4,6,6-trimethyl-	10.17	107 135	6		d	d	d
2,4-di(trimethylsiloxy)-6,7-(methylenedioxy)-2H-1,4-benzoxazin-			1253.60				
93-one	10.52	73 102 341	8		d	nd	nd
	10 70	07 400	1276.69				
10 Hexanoic acid, 2-ethyl-, methyl ester	10.76	87 102	3		d	nd	nd
11 Tetradecane	11.85	57,71	1397.66		d	d	nd
	11.05	57,71	1446.08		u		
123-methyltridecane	12.63	71,85	4		d	d	nd
13 pentadecane	12.694	57,71	1449.97		d	nd	nd
	12.001	01,11	1480.69		<u>~</u>		
14 Dodecanoic acid	13.2	57,73	2		d	d	d
			1499.51				
15 Hexadecane	13.51	57,71	4		d	nd	nd
	5		1799.33				

GC-GC: polar and non-polar column 2D

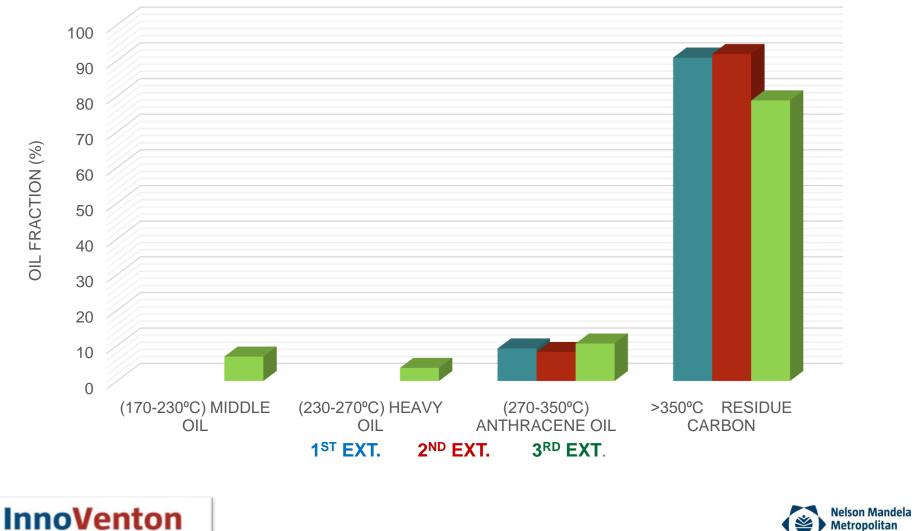
GC-GC: 3D representation...

This technique was performed to get the estimation of oil and petroleum fractions in the extracted oils

SIMDIST D86 conditions

Agilent Technologies 7890 A GC D 2887-06 (D86 Correlation BP Distribution) **IBP (°C)** = 322.5 WT4,270 WT5 and 179.6 WT6 10% **FBP (°C)** = 489.3 WT4, 490 WT5 and 491.5 WT6 90% Flame Ionization Detector 200°C; H₂ 40 ml/min; Air 295 ml/min Oven: 100°C; Time: 0.5-1.2 min; Rate: 15°C/min **Injector Program:** 100-350°C; Time: 0-2.5 min Rate: 35°C/min Column: Injector volume: 0.1 µl; flow: 19 ml/min; Gas flow (He): 26 ml/min; Dimension: 10 m X 0.53 mm InnoVenton

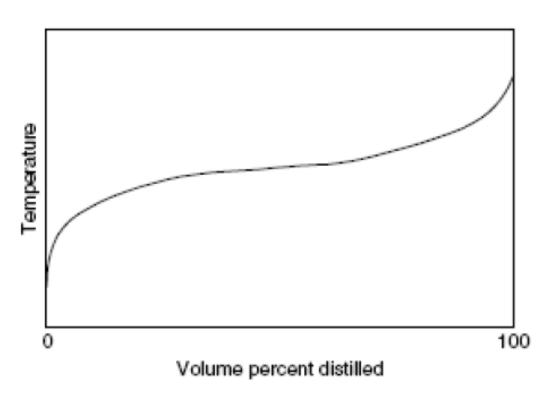
am, Innovate, Create


Oil fractions

	No.
	and the second
/	Sugar an

PETROLEUM FRACTIONS	%	%	%
(Ref. Fischer, C.H: Composition of WASTE			
TYRE OILS)	1 st EXT.	2 nd EXT.	3 rd EXT.
(0-170°C) LIGHT OIL	n/a	n/a	n/a
(170-230°C) MIDDLE OIL			6.90
(230-270°C) HEAVY OIL			3.70
(270-350°C) ANTHRACENE OIL	9.20	8.20	10.60
>350°C RESIDUE CARBON	90.80	91.80	78.80
TOTAL	100.00	100.00	100.00

Oil fractions contd...


29

Dream. Innovate. Create.

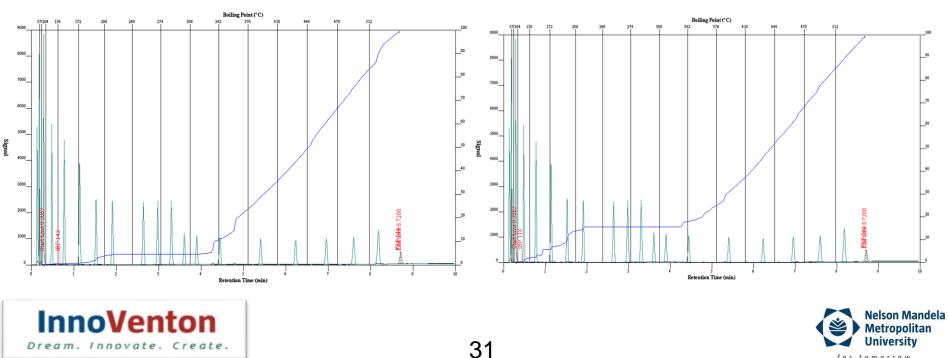
for tomorrow

Petroleum fractions

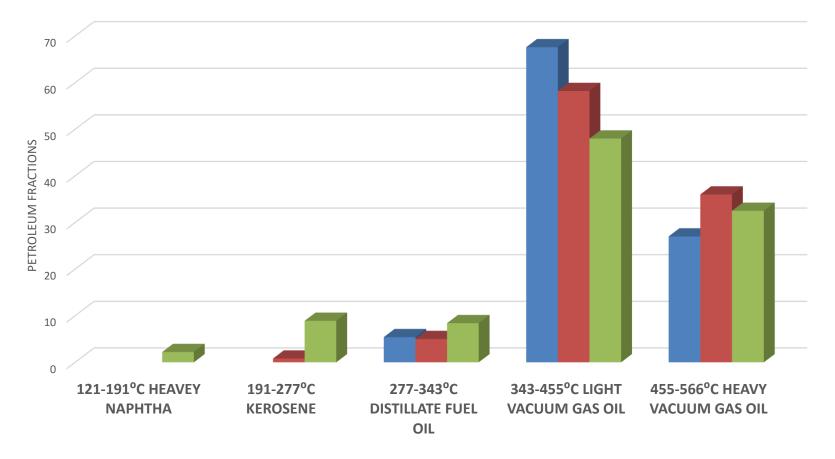
Pseudo-component curve

InnoVenton

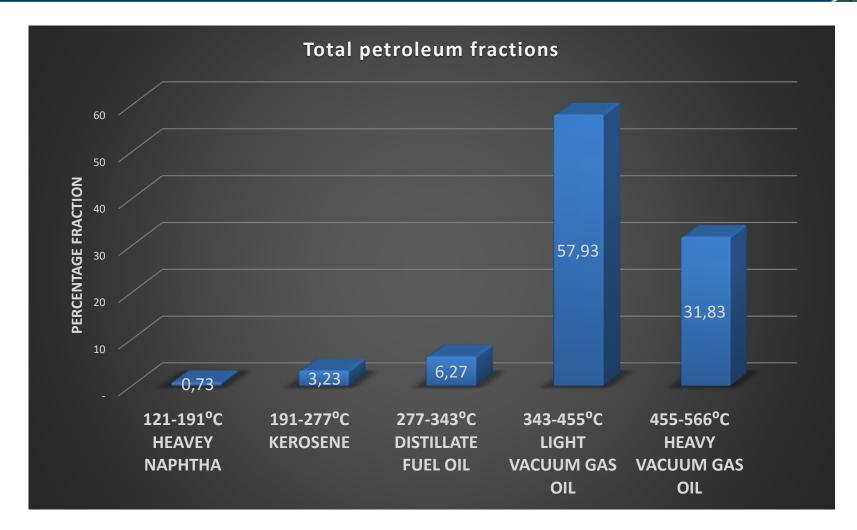
Innovate.


Properties of pseudo-component curve

- Molecular weight
- Critical constant
- Acentric factor
- Heat of formation
- Ideal gas enthalpy
- Latent heat
- Vapour pressure
- Transport properties


Petroleum fractions contd...

Petroleum fractions contd...



32

Petroleum fractions contd...

Possible uses

Petroleum fractions	Boiling point (°C)	Average specific gravity	Number of C atoms	Test method	Uses	
L.P.G	Up to 30	0.6	1 to 4	ASTM D86	Camping stoves	
Light Naphtha	30 to 100	0.69	5 to 8	ASTM D86	Fuel for cars	
Heavy Naphtha	100 to 150	0.758	8 to 10	ASTM D86	Reforming petrochemical feed	
Kerosene	150 to 250	0.808	10 to 14	ASTM D86	Fuel for aeroplane	
Light vacuum gas <mark>oil</mark>	<mark>250 to 350</mark>	<mark>0.84</mark>	<mark>15 to 20</mark>	ASTM D216	Fuel for lorries, trains and cars	
Heavy vacuum gas <mark>oil</mark>	<mark>350 to 450</mark>	<mark>0.885</mark>	<mark>21 to 28</mark>	ASTM D158	Lubricant heating	
Residual	Over 450	0.945	Over 28	ASTM D1160	Road surfacing	

- Based on the results obtained: GC-MS and SIMDIST we can conclude that the extracted oil is a heavy oil.
- From the previous work done it has been recorded that palmitic, oleic and steric acids are the stating material for biodiesel.
 - Extracted oil may be suitable for Biodiesel
- Light vacuum gas oil forms the largest part of the petroleum fractions in all the extracted oils.
- Future work
 - Use a sensitive instrument to get the quantitative sulfur content in the oil like Atomic Absorption spectroscopy (AA).
 - Build a reactor to upscale currently designing one.
 - Crack the oil to produce diesel and petrol possibility
 - Analysis the quality of the petroleum fuel from extracted oil compared to that of commercial fuels.

Acknowledgements

- REDISA
- Supervisor and co-supervisors
- Center for Rubber Science and Technology
- Physical and Polymer science staff NMMU
- SUN, Innoventon and NMMU

Center for Rubber Science and Technology

THANK YOU!

