# In the name of ALLAH; the Most beneficent the most merciful



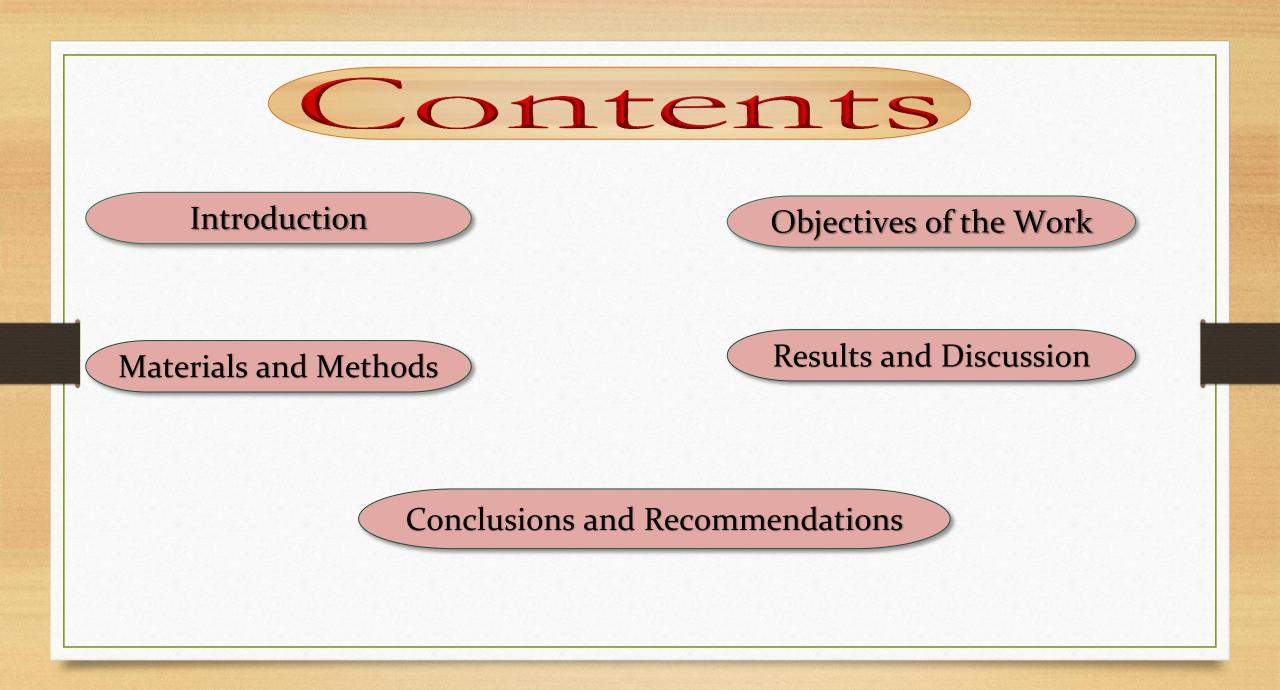


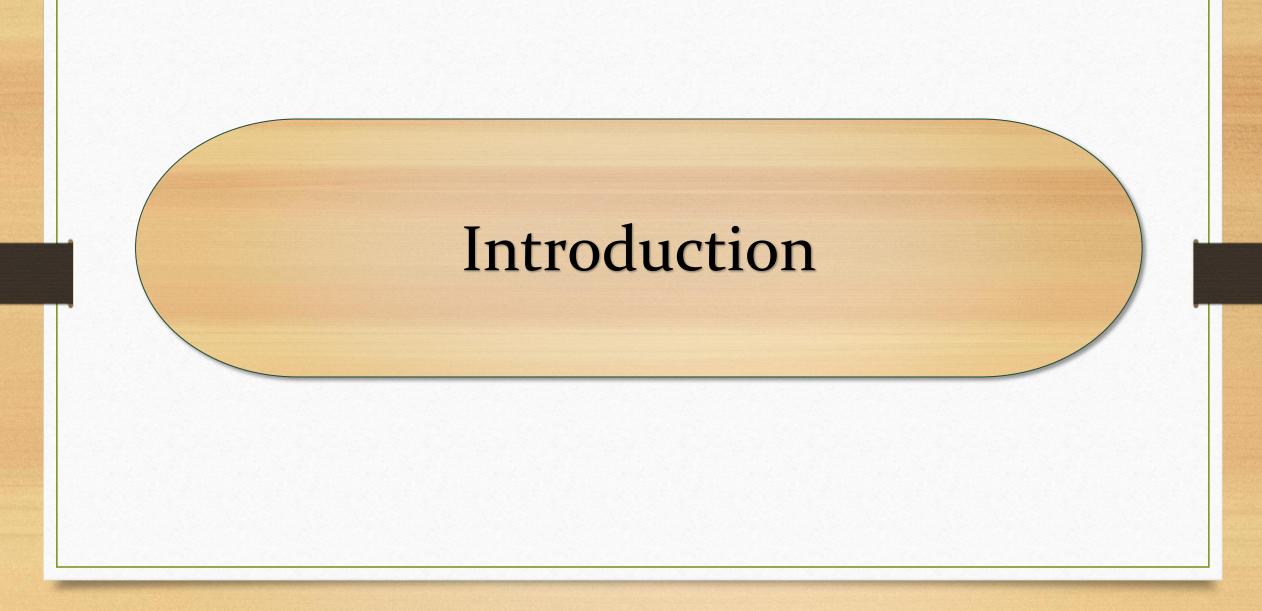
# ZEWAIL CIT

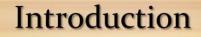
#### **EXPERIMENTAL STUDY ON THE INFLUENCE OF ETHANOL AND AUTOMOTIVE GASOLINE BLENDS**

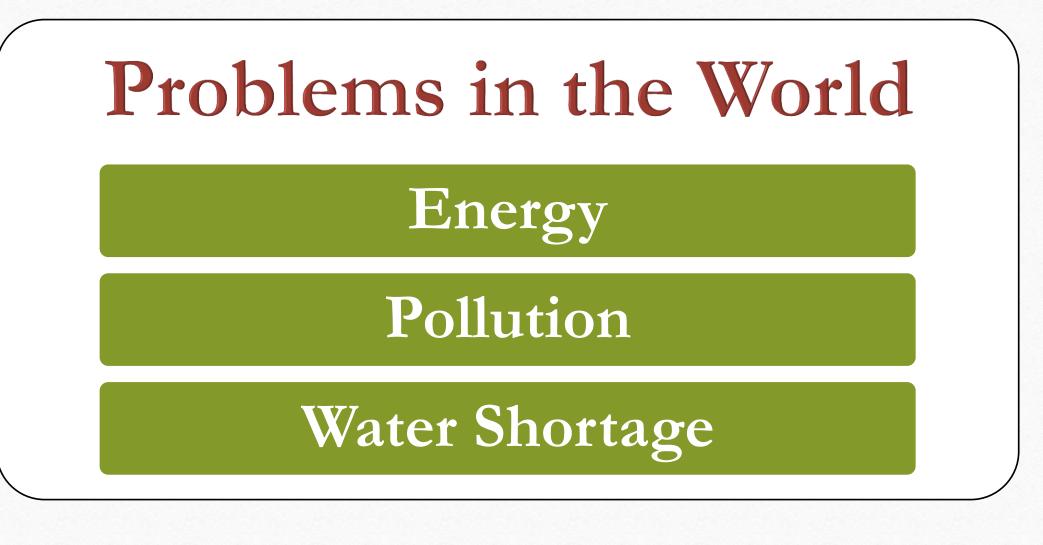








1. Department of Mining and Petroleum Engineering, Al-Azhar University, Egypt. tarekfetouh@yahoo.com


- 2. Department of Chemical Engineering, British University in Egypt, Egypt.
- 3. Department of Chemical Engineering, Faculty of Engineering Minia University, Egypt.
- 4. Zewail City University of Science and Technology, Sheikh Zayed 12588, 6th October, Egypt.

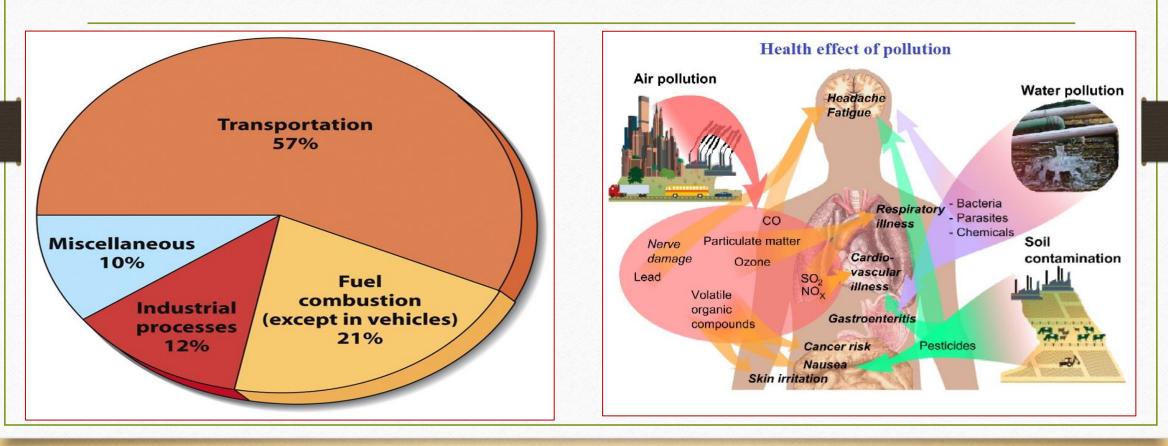











#### Introduction

- Inhaling or swallowing large amounts of gasoline can cause seizures, unconsciousness, and death.
- It can also harm the nervous system and cause coma and inability to breath.
- Inhaling high concentrations of gasoline can irritate the lungs.
- Repeated high exposure to gasoline can cause lung, brain, and kidney damage.
  The use of bio-fuel has been found to reduce risks of cancer because it reduces the production of cancer-causing compounds, such as carbon monoxide.
  This research focuses on gasoline-ethanol blends or commonly known as gasohol which produce less air pollution than the fossil fuel.
- This work would contribute to reduction of the threat to the environment from exhaust emissions and global warming.



# "Our Environment Our Responsibility"

- Globally, an estimated 200,000 to 570,000 people die each year form ambient air pollution.
- Cars are responsible for 40%-60% of the world's air pollution.



# **Objectives of the Work**

- The Production of new blends of environmental gasolines with high octane numbers which have less amount of benzene and aromatic contents.
- Study the physico-chemical characteristics of various refinery gasoline-blends of reformate, isomerate, full refinery naphtha (FRN), heavy straight run naphtha (HSRN), hydrocracked naphtha, heavy hydrocracked naphtha, coker naphtha and heavy coker naphtha.
- Investigate the physico-chemical characteristics of gasoline-ethanol blends to obtain the optimum sample.
- The selection according to Euro-3 and Euro-5 standard regulations.

#### The materials used to produce environmental gasolines

| Sources                 | Blend-stocks                                                         |
|-------------------------|----------------------------------------------------------------------|
| Crude Distillation      | Full Straight Run Naphtha(FSRN)<br>Heavy Straight Run Naphtha (HSRN) |
| Upgrading Units         | Isomerate                                                            |
|                         | Reformate                                                            |
| <b>Conversion Units</b> | Coker Naphtha<br>HeavyCoker Naphtha                                  |
|                         | Hydrocracked Naphtha<br>Heavy Hydrocracked Naphtha                   |
| Oxygenated Compounds    | Ethanol                                                              |

Typical Volume Shares and Properties of Standard Gasoline Blend stocks

|                    |                      | Typical | al Typical Properties |     |               |       |           |         |         |
|--------------------|----------------------|---------|-----------------------|-----|---------------|-------|-----------|---------|---------|
| Source             | Blendstock           | Share   | Oct                   | ane | Sulfur        | RVP   | Aromatics | Benzene | Olefins |
|                    |                      | (Vol%)  | RON                   | MON | (ppm)         | (psi) | (vol%)    | (vol%)  | (vol%)  |
| Crude Distillation | Str. Run Naphtha     | 5 - 10  | 71                    | 70  | ≈ 120         | 12    | -         | -       | -       |
|                    | Isomerate            | 0 - 10  | 82                    | 80  | 1             | 13    | -         | -       | -       |
| Upgrading Units    | Alkylate             | 5 - 10  | 94                    | 92  | < 10          | 3     | -         | -       | -       |
|                    | Reformate            | 20 -30  | 97                    | 88  | < 4           | 5     | 60        | 5       | -       |
|                    | FCC Naphtha          | 30 - 35 | 92                    | 80  | 500 -<br>1500 | 5     | 25        | 1       | 30      |
| Conversion Units   | Coker Naphtha        | 0 - 5   | 88                    | 80  | $\approx 500$ | 19    | 0.5       | 0.5     | 50      |
|                    | Hydrocracked Naphtha | 5 - 15  | 78                    | 76  | < 4           | 11    | 2         | 2       | -       |
|                    | Natural Gas Liquids  | 0 - 5   | 73                    | 71  | ≈ 150         | 13    | 3         | 1       | 1       |
| Purchases          | MTBE                 | 0 - 15  | 118                   | 102 | < 5           | 8     | -         | -       | -       |
|                    | Ethanol              | 0 - 10  | 123                   | 103 | < 5           | 18    | -         | -       | -       |

#### EU REFERENCE TEST FUELS

These specifications apply to reference fuel used during certification/type approval.

#### UNLEADED GASOLINE FUEL

Values for Euro 3 and Euro 4 are part of European Directive 98/69/EC and 2002/80/EC. For implementation timing see pages 10-11

| Parameter       | Unit    | ECE, EC 93,96 | Euro 3              | Euro 4              |
|-----------------|---------|---------------|---------------------|---------------------|
| Octane          | RON/MON | 95/85         | 95/85               | 95/85               |
| RVP             | kPa     | 56-64         | 56-60 <sup>1)</sup> | 56-60 <sup>1)</sup> |
| Density at 15°C | kg/l    | 0,748-0,762   | 0,748-0,762 1)      | 0,740-0,754 1)      |
| T 10            | °C      | 42-58         |                     |                     |
| T 50            | °C      | 90-110        |                     |                     |
| T 90            | °C      | 155-180       |                     |                     |
| Dist. at 100°C  | % vol   |               | 49-57               | 50-58               |
| at 150°C        | % vol   |               | 81-87               | 83-89               |
| FBP             | °C      | 190-215       | 190-215             | 190-210             |
| Aromatics       | % vol   | 45            | 28-40               | 29-35               |
| Olefins         | % vol   | 20            | ≤ 10                | ≤ 10                |
| Benzene         | % vol   | 5             | ≤1                  | ≤1                  |
| Oxygen          | % mass  |               | ≤2,3                | ≤1                  |

| Parameter  | Unit | ECE, EC 93,96 | Euro 3 | Euro 4 |
|------------|------|---------------|--------|--------|
| Sulfur     | ppm  | 400           | 100    | 10     |
| Lead       | g/l  | 0,005         | 0,005  | 0,005  |
| Phosphorus | g/l  | 0,0013        | 0,0013 | 0,0013 |

<sup>1)</sup> Different values for cold temperature test fuel: RVP: 56-95 kPa, Density at 15°C: 748-775 kg/m<sup>3</sup>

#### DIESEL FUEL

| Parameter                         | Unit                      | ECE, EC 93,96          | Euro 3,4              |
|-----------------------------------|---------------------------|------------------------|-----------------------|
| Cetane                            |                           | 49-53                  | 52-54                 |
| Density at 15°C                   | kg/l                      | 0,835-0,845            | 0,833-0,837           |
| Distillation T 50                 | °C                        | ≥ 245                  | ≥ 245                 |
| T 95                              | °C                        | 320-340                | 345-350               |
| FBP                               | °C                        | ≤ 370                  | ≤ 370                 |
| Flash point                       | °C                        | ≥ 55                   | ≥ 55                  |
| Viscosity at 40°C                 | mm <sup>2</sup> /s        | 2,5-3,5                | 2,5-3,5 <sup>2)</sup> |
| Polycyclic aromatics              | % mass                    |                        | 3-6,0                 |
| Sulfur                            | ppm                       | ≤ 3000                 | ≤ 300 <sup>3)</sup>   |
| <sup>2)</sup> For Euro 4: 2,3-3,3 | <sup>3)</sup> Mandatory d | iesel sulfur level for | Euro 4: ≤ 10 ppm      |

#### EU REFERENCE TEST FUELS

#### Values for Euro 5 and Euro 6 are part of Comitology Reg 2008/692

#### UNLEADED GASOLINE FUEL

#### DIESEL FUEL

| Parameter       | Unit              | Euro 4              | Euro 5&6            | Parameter                   | Unit              | Euro 4  |
|-----------------|-------------------|---------------------|---------------------|-----------------------------|-------------------|---------|
| Octane          | RON/MON           | 95/85               | 95/85               | Cetane                      |                   | 52-54   |
| RVP             | KPa               | 56-60 <sup>1)</sup> | 56-60 <sup>1)</sup> | Density at 150°C            | kg/m <sup>3</sup> | 833-837 |
| Density at 15°C | kg/m <sup>3</sup> | 748-775             | 743-756             | Distillation T50            | °C                | ≥ 245   |
| Dist. at 100°C  | % vol             | 50-58               | 48-60               |                             | -                 |         |
| at 150°C        | % vol             | 83-89               | 82-90               | T95                         | °C                | 345-350 |
| FBP             | °C                | 190-210             | 190-210             | FBP                         | °C                | ≤ 370   |
| Aromatics       | % vol             | 29-35               | 29-35               | Flashpoint                  | °C                | ≥ 55    |
| Olefins         | % vol             | ≤ 10                | 3-13                | Viscosity at 40°C           | mm²/s             | 2,3-3,3 |
| Benzene         | % vol             | ≤ 1                 | ≤ 1                 | Polycyclic aromatics        | % mass            | 3,0-6,0 |
| Oxygen          | % mass            | ≤ 1                 | Ethanol only        | Sulfur                      | ppm               | ≤ 10    |
| Sulfur          | ppm               | ≤ 10                | ≤ 10                | FAME                        | % vol             | -       |
| Lead            | mg/l              | ≤ 5                 | ≤ 5                 |                             |                   | 10.005  |
| Phosphorus      | g/l               | ≤ 1,3               | ≤ 1,3               | Oxydation stability         | mg/ml             | ≤ 0,025 |
| Ethanol         | % vol             | -                   | 4,7-5,3             | Oxydation stability @ 110°C | hr                | -       |
|                 |                   |                     |                     |                             |                   |         |

<sup>1)</sup> Different values for cold temperature test fuel: RVP: 56-95 KPa

| Blendstocks, vol.%            | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 |
|-------------------------------|----------|----------|----------|----------|----------|
| Reformate                     | 52       | 60       | 51       | 51       | 36       |
| Isomerate                     | 12       | 9        | 8        | 8        | 17       |
| FRN                           | 17       | 10       | 13       |          | 17       |
| HSRN                          |          |          |          | 13       |          |
| Hydrocracker naphtha          | 17       | 20       | 25       |          |          |
| Heavy hydrocracker<br>naphtha |          |          |          | 25       | 25       |
| Coker naphtha                 | 2        | 1        | 3        |          | 5        |
| Heavy coker naphtha           |          |          |          | 3        |          |

#### **Ethanol-Gasoline Blend Samples**

| Blendstocks, vol. %     | <b>E0</b> | E5 | E10  | E15 | E 20 |
|-------------------------|-----------|----|------|-----|------|
| FRN                     | 17        | 16 | 15.5 | 14  | 14   |
| Reformate               | 36        | 34 | 31.5 | 31  | 28   |
| Isomerate               | 17        | 16 | 15.5 | 14  | 14   |
| Hydrocracker<br>naphtha | 25        | 24 | 23   | 22  | 20   |
| Coker naphtha           | 5         | 5  | 4.5  | 4   | 4    |
| Ethanol                 | 0         | 5  | 10   | 15  | 20   |

| ASTM Tests             |                        |  |  |  |  |  |
|------------------------|------------------------|--|--|--|--|--|
| Test Names             | ASTM Test Numbers      |  |  |  |  |  |
| Density                | ASTM D1217-15          |  |  |  |  |  |
| ASTM Distillation      | <b>ASTM D86-04</b> b   |  |  |  |  |  |
| Gas Chromatography     | ASTM D 6839-16         |  |  |  |  |  |
| Research Octane Number | <b>ASTM D2699-15</b> a |  |  |  |  |  |
| Motor Octane Number    | ASTM D2700-16          |  |  |  |  |  |
| Reid Vapor Pressure    | ASTM D 323-15a         |  |  |  |  |  |
| Heat of Combustion     | ASTM D4809 - 13        |  |  |  |  |  |

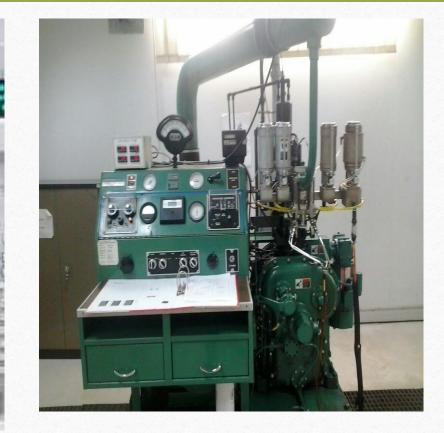
# Devices used in the research







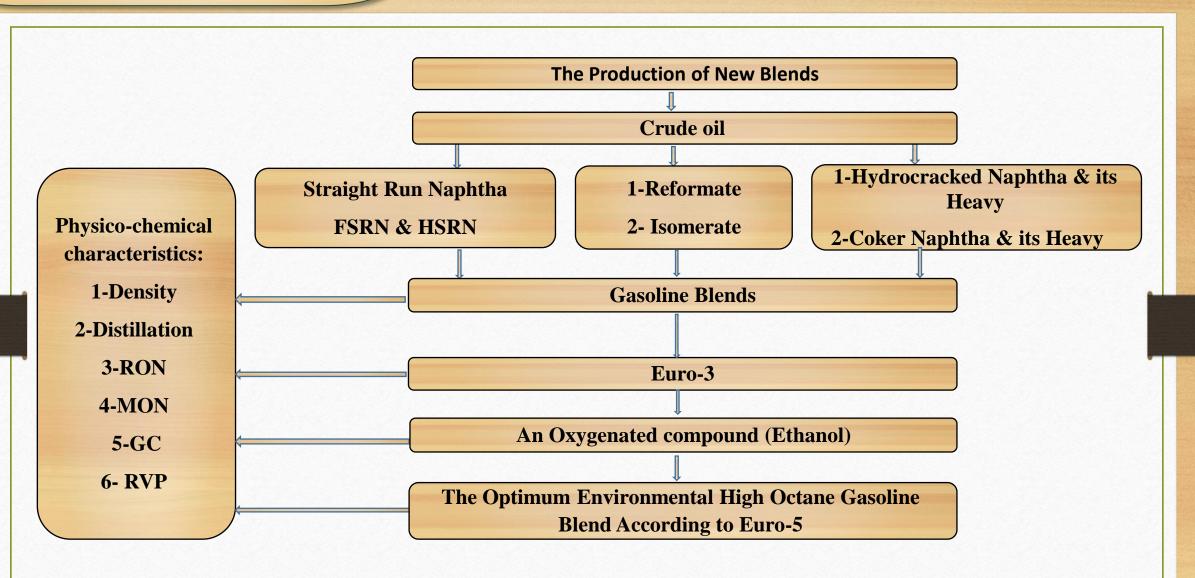
**ASTM Distillation Apparatus.** 


Oxygen bomb calorimeter.

Reid Vapor Pressure Tester.

### Devices used in the research



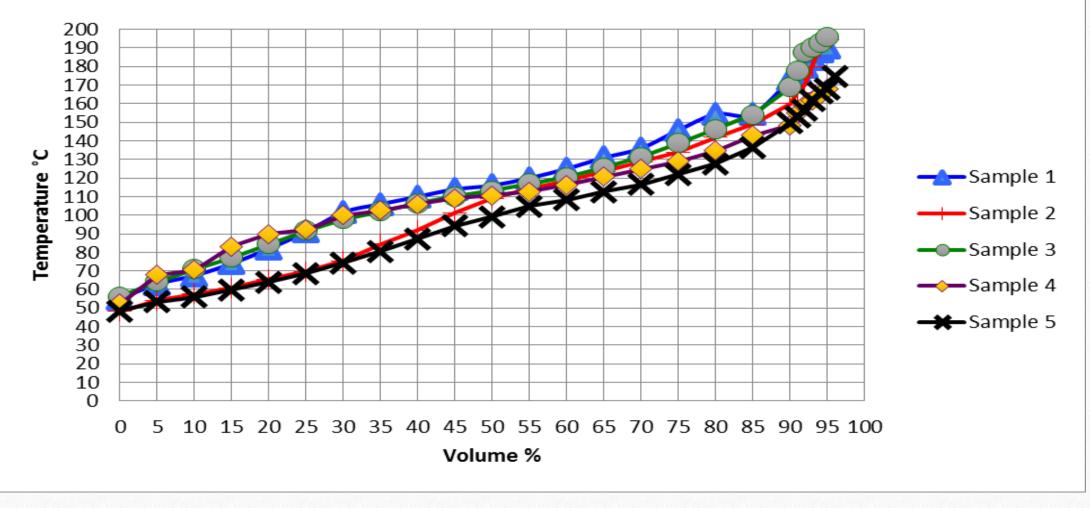

Gas Chromatograph.



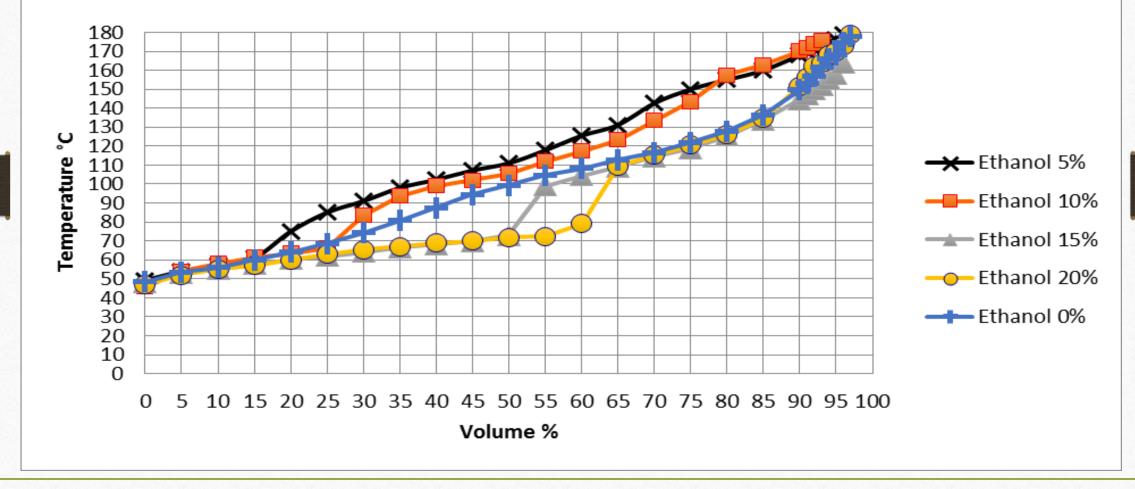
Cooperative Fuel Research (CFR)) Engine.



Octane Meter Apparatus.




The Schematic Diagram of the Experimental Work


# **Results and Discussion**

#### **Results and Discussion**

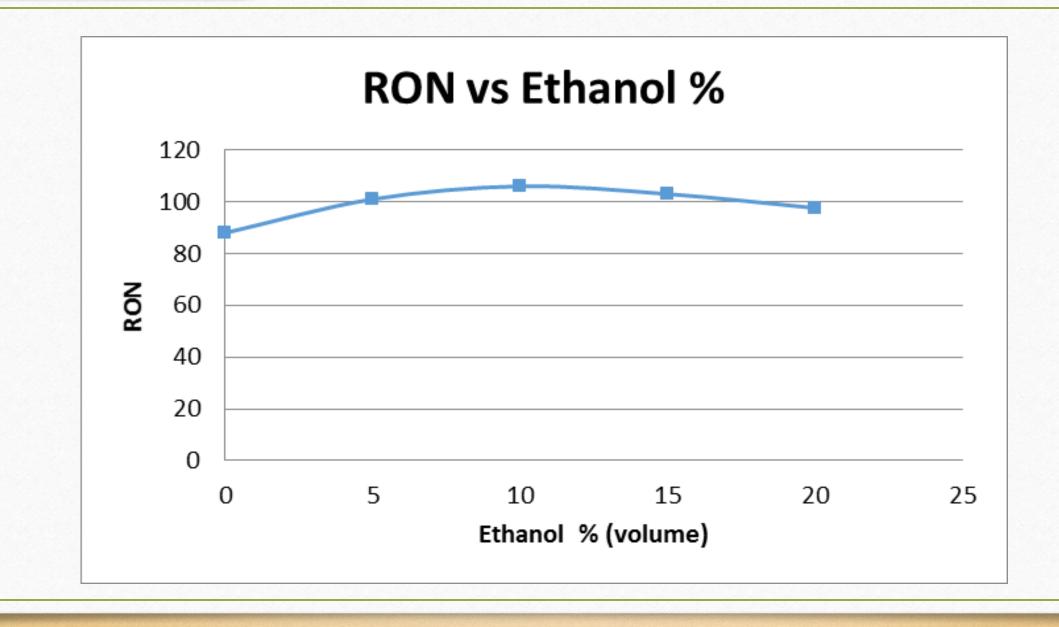
#### **Distillation Curves of Different Gasoline Blends**



### Distillation Curves of Tested Gasoline-Ethanol Blends



#### Results and Discussion Physico-chemical characteristics for unleaded gasoline samples.


| Test                       | Method         | Unit              | Sample 1 | Sample 2 | Sample 3                     | Sample 4 | Sample 5                                          |
|----------------------------|----------------|-------------------|----------|----------|------------------------------|----------|---------------------------------------------------|
| Density @ 15.5 °C          | ASTM D1217-16  | kg/m <sup>3</sup> | 768.1400 | 772.4280 | 755.1124<br>(748-762) Euro-3 | 769.1600 | 750.5480                                          |
| RVP                        | ASTM D323-15a  | Psi               | 7        | 7.5      | 8.4<br>(8.1-8.7) Euro-3      | 7.2      | 8.6                                               |
| RON                        | ASTM D2699-15a |                   | 95.6     | 98.2     | 95                           | 90       | 88                                                |
| MON                        | ASTM D2700-16  |                   | 85.8     | 91.1     | 88                           | 86       | 81.7                                              |
| Aromatic                   | ASTM D6839-16  | Vol. %            | 42.8420  | 46.6960  | 40<br>(29-42) Euro-3         | 40       | 8.6       900 900 900 900 900 900 900 900 900 900 |
| Paraffins                  | ASTM D6839-16  | Vol. %            | 18.4680  | 16.3602  | 18.6639                      | 18.6639  | 21.6228                                           |
| Isoparaffins               | ASTM D6839-16  | Vol. %            | 25.2160  | 24.8070  | 26.3960                      | 26.3960  | 27.8200                                           |
| Naphthenes                 | ASTM D6839-16  | Vol. %            | 11.8335  | 10.8500  | 12.9820                      | 12.9820  | 15.1632                                           |
| Olefins                    | ASTM D6839-16  | Vol. %            | 1.6405   | 1.2868   | 1.9581                       | 1.9581   | 2.7400                                            |
| Benzene                    | ASTM D6839-16  | Vol. %            | 0.68     | 0.78     | 0.66<br><1 Euro-3            | 0.66     | 0.47 <b>9</b>                                     |
| IBP                        | ASTM D86-04b   | <sup>0</sup> C    | 55       | 48.1     | 56.3                         | 52.4     | 48.5                                              |
| T <sub>10</sub>            | ASTM D86-04b   | <sup>0</sup> C    | 67.5     | 57.5     | 71                           | 70.6     | 56                                                |
| T <sub>50</sub>            | ASTM D86-04b   | <sup>0</sup> C    | 116      | 109      | 113.3                        | 110.7    | 99.2                                              |
| FBP@ 96 Vol.%              | ASTM D86-04b   | <sup>0</sup> C    | 195      | 197      | 198 (190-215) Euro-3         | 170      | 174.8                                             |
| Dist. @ 100 <sup>0</sup> C | ASTM D86-04b   | Vol. %            | 30       | 45       | 34                           | 30       | 50                                                |
| Dist. @ 150 °C             | ASTM D86-04b   | Vol. %            | 75       | 85       | 83 (81-87) Euro-3            | 90       | 90                                                |

#### Results and Discussion Physico-chemical characteristics for ethanol- gasoline blends.

| Test                           | Method         | Unit              | E0       | E5                     | E10      | E15      | E20      |
|--------------------------------|----------------|-------------------|----------|------------------------|----------|----------|----------|
| Density at 15.5 <sup>o</sup> C | ASTM D1217-16  | kg/m <sup>3</sup> | 750.5480 | 745.5528               | 739.3120 | 752.5500 | 754.1000 |
|                                |                |                   |          | (743-756) Euro-5       |          |          |          |
| RVP                            | ASTM D323-15a  | Psi               | 8.6      | 8.7 (8.1-8.7) Euro-5   | 8.8      | 7.9      | 7.4      |
| RON                            | ASTM D2699-15a |                   | 88       | 101                    | 106      | 103      | 97.6     |
| MON                            | ASTM D2700-16  |                   | 81.7     | 98                     | 105      | 102      | 89.5     |
| Aromatic                       | ASTM D6839-16  | Vol. %            | 32.654   | 31.0910 (29-35) Euro-5 | 29.6855  | 28.1948  | 26.1013  |
| Paraffins                      | ASTM D6839-16  | Vol. %            | 21.6228  | 20.5910                | 19.6571  | 18.2024  | 18.0120  |
| Isoparaffins                   | ASTM D6839-16  | Vol. %            | 27.8200  | 26.4840                | 25.2909  | 24.0913  | 23.0232  |
| Naphthenes                     | ASTM D6839-16  | Vol. %            | 15.1632  | 14.4211                | 13.7847  | 13.1254  | 12.1240  |
| Olefins                        | ASTM D6839-16  | Vol. %            | 2.7400   | 2.5081                 | 2.4909   | 2.0826   | 2.0121   |
| Benzene                        | ASTM D6839-16  | Vol. %            | 0.47     | 0.47                   | 0.46     | 0.46     | 0.45     |
|                                |                |                   |          | <1 Euro-5              |          |          |          |
| IBP                            | ASTM D86-04b   | <sup>0</sup> C    | 48.5     | 49.3                   | 45.6     | 48.2     | 47       |
| T <sub>10</sub>                | ASTM D86-04b   | <sup>0</sup> C    | 56       | 57                     | 58.2     | 55       | 55       |
| T <sub>50</sub>                | ASTM D86-04b   | <sup>0</sup> C    | 99.2     | 111                    | 105.6    | 73       | 71.8     |
| FBP@97 Vol. %                  | ASTM D86-04b   | <sup>0</sup> C    | 178      | 190 (190-210) Euro-5   | 188      | 166      | 179      |
| Dist. @ 100 °C                 | ASTM D86-04b   | Vol. %            | 50       | 38                     | 40       | 55       | 64       |
| Dist. @ 150 °C                 | ASTM D86-04b   | Vol. %            | 90       | 75                     | 77.5     | 92.5     | 90       |
| Heat of Combustion             | ASTM D 4809-13 | MJ/L              | -        | 35                     | -        | -        | -        |

#### **Results and Discussion**

RON vs Ethanol % by volume.



# **Conclusions and Recommendations**

### Conclusions

Based on the experimental observations in the present work, the following conclusions can be drawn:

- 1. The Production of environmental, clean and high octane number gasoline blends are the best solution for our environment.
- 2. The optimum unleaded gasoline sample matching Euro-3 specifications is the sample 3.
- **3.** The optimum ethanol gasoline blend matching Euro-5 specifications is the sample E5.
- 4. Ethanol-gasoline-blends can be used as an alternative fuel for a variable speed spark-ignition up to 5 vol. % blends .
- 5. The high yield of gasoline production is based on different blend stocks not only straight run naphtha and reformate.

#### **Conclusions and Recommendations**

- **6.** Using oxygenated compounds lead to reduce the aromatic content and consequently reduce carcinogenic compounds as well as improve octane numbers.
- 7. Maximizing the quality and quantity of an environmental gasoline according to standard European regulations (Euro-5).
- 8. An Environmental gasoline provides a great potential benefit to the refinery in view of minimizing operating costs, product quality improvement, safe and healthy living environment.

### Recommendations

The following recommendations could be put for future work:

- 1. This research should be applied in the industry to prevent the hazards of air pollution.
- 2. The optimum composition of refinery gasoline blend should be applied for maximizing its quantity and quality with ethanol percentages.

