

MedImmune

Early Life Intervention Diminishes Manifestations of Sjögren's Syndrome in NOD.H-2^{h4} mice

Tamer Mahmoud

Postdoctoral Fellow

Rachel Ettinger

Senior Scientist

Clinical Manifestations of Sjögren's Syndrome in Humans and Mice

•Sjögren's Syndrome is the 2nd most common autoimmune rheumatic disease characterized by:

- Autoantibodies
- •Ectopic lymphoid follicles in the salivary and lacrimal gland
- $\cdot\downarrow$ salivary and tear flow
- •NOD.H-2^{h4} mice recapitulate many of the human clinical presentations

Cihakova, D. et al. Contemporary Challenges in Autoimmunity. 1173:378-383 (2009).

Ectopic Follicles are Organized Lymphocyte Clusters that Develop in Chronically Inflamed Tissue

Ectopic Lymphoid Follicles in Salivary Glands Fully Develop at 20 Weeks of Age

B220 / CD3 100X

Salivary Gland

with EFs:

Salivary Flow

MedImmune

Karnell et. al, Mol. Imm. 2014

4

Spontaneous Germinal Centers Develop in the Spleens of Female but not Male Mice Early in Life

Age 3 weeks

3.5 weeks

6 weeks

Spleen (IHC)

IgM PNA 100X

Activated B Cells undergo Affinity Maturation and Class Switch Recombination in Germinal Centers

GC in autoimmune mice are likely to be the sites where mutated, self-reactive autoantibodies are generated

Detection of α Ro/La Autoantibodies Following the Emergence of Spontaneous Germinal Centers

Autoantibodies Present Before Symptom Onset in Primary Sjögren Syndrome

JAMA. 2013;310(17):1854-1855. doi:10.1001/jama.2013.278448

Timeline of Clinical Manifestations

Approach: Investigate the Long-Term Effect of Germinal Center Disruption in Early Life

Transient Disruption of Splenic Germinal Centers Post αCD40L Treatment

Spleen (100X)

Single Early Life Treatment with αCD40L Abolished Salivary Gland Ectopic Follicles in Aged Mice

CD3 B220

Salivary gland 40X

Single Early Life Treatment with α CD40L Decreased Salivary Gland B and T cells in Aged Mice

MedImmune

αCD40L Significantly Reduced T/B Clusters in the Salivary Gland

H & E paraffin sections

α CD40L Decreases α Ro52 Autoantibodies

Early Life Treatment with α CD40L Improves Salivary Flow

Conclusions

- NOD.H2h4 mice develop spontaneous germinal centers at 3.5 weeks of age, followed by the emergence of salivary gland lymphoid follicles starting at 12 weeks of age
- Early life blockade of CD40-CD40L interactions in mice:
 - Inhibits splenic GC reactions for at least 8 weeks
 - Significantly reduces SG lymphoid follicles in aged mice
 - Significantly reduces B cells and CD8 T cells in SG infiltrates
 - Lowers serum levels of SS-associated autoantibodies in an age-specific manner in this mouse model
 - Improves salivary flow in aged mice

Acknowledgements

Rachel Ettinger **Ronald Herbst** Laura Carter Jodi Karnell Shu Wang Naemeh Poushafie **I**sharat Yusuf Yue Wang Nanette Mittereder Ellen Kuta **Devon Taylor** Diana Pao Julie Bakken

