Tuning the Brain: Neuromodulation as a Possible Panacea for treating non-pulsatile tinnitus?

Prof. Sven Vanneste

The University of Texas at Dallas School of Behavioral and Brain Sciences Lab for Clinical & Integrative Neuroscience

П

Tinnitus

- At some point most people experience tinnitus
- This has been related to listening to loud music, use of medication, trauma or other causes
- This sensation is reversible and subsides approximately between a few seconds to a few days

Π

Tinnitus

 In an adult population 10 to 15% perceives tinnitus continuously

I

Tinnitus

- In an adult population 10 to 15% perceives tinnitus continuously
- Increasing up to 33% in the elderly population

Tinnitus

- In an adult population 10 to 15% perceives tinnitus continuously
- Increasing up to 33% in the elderly population
- Up to 25% of the affected people report interference with their lives as tinnitus causes a considerable amount of distress

Tinnitus treatments

- Counseling
- Hearing aid
- Masking
- Active amplification
- Medication
- Neuromodulation (Non-invasive)

- 30% no treatment
- Most treatment are based on symptomatic relief.
- No causal treatment
- Subtypes?

Loss of auditory input

Loss of auditory input sets up a cascade of neurophysiologic changes in the central auditory system culminating to the perception of a phantom sound

Loss of auditory input

The brain involved in tinnitus

Vanneste & De Ridder, Frontiers in System Neuroscience, 2012 Song, De Ridder & Vanneste, Journal Nuclear Medicine, 2012

Why a phantom sound?

Active "Bayesian" Brain

The predictive brain - the architecture of the cortex implements a top-down prediction algorithm that constantly anticipates incoming bottom-up sensory stimuli (Wacongne et al., PNAS, 2011).

No reduce the uncertainty of future events

De Ridder, Vanneste & Freeman, Neuroscience & Biobehavioral Reviews, 2014

Why phantom sound?

Why does the brain generates tinnitus?

- **1. Sensory deprivation** leads to limits the amount of information the brain can acquire
- **2. increases uncertainty** present in the environment
- 3. to reduce the uncertainty will look for information or fill in the missing information
- 4. reduction the prediction error

The brain involved in tinnitus

Mohan, De Ridder & Vanneste, submitted

Hub: Auditory cortex

1. Little deafferentation

Spontaneous Hyperactivity

2. More deafferentation

Map plasticity

3. Very large deafferentation

Memory

1. Hyperactivity within the auditory cortex

a. fMRI

Increased BOLD activity within the auditory cortex

De Ridder& Vanneste, JNS, 2011

b. Source localized EEG

Van der Loo, Vanneste et al., Plos one, 2009

1. Hyperactivity within the auditory cortex

Tonic stimulation Burst stimulation N =84 16 responders 13 responders N= 43 27 non-responders -14 non-responders

De Ridder, Vanneste et al., JNS, 2011 De Ridder & Vanneste, WJN, 2014

a. Transcranial magnetic stimulation (TMS)

b. Auditory cortex implant

8 7.5 **Visual Analogue Scale** 2.2 2 2.9 2.2 2 2.2 7 5 Real Baseline Sham

Vanneste et al., European Journal of Neurology, 2010

Hub: Auditory cortex

1. Little deafferentation

Spontaneous Hyperactivity

2. More deafferentation

Map plasticity

3. Very large deafferentation

Memory

2. Map plasticity

The tonotopic reorganization of the auditory cortex

C. After Multiple VNS Tone Therapy

Best Freq (kHz)

Engineer et al., Nature, 2011

Cortical reorganization in the **auditory cortex** in after noise trauma has been associated with tinnitus

Norena et al., Journal of Neuroscience, 2006 Mühlnickel et al., PNAS, 1998

2. Map plasticity

De Ridder & Vanneste., Neuromodulation, 2014 De Ridder & Vanneste, Otology Neurotology, 2015

4 week of treatment

Hub: Auditory cortex

1. Little deafferentation

Spontaneous Hyperactivity

2. More deafferentation

Map plasticity

3. Very large deafferentation

Memory

3. Memory

Song & Vanneste, Journal Nuclear Medicine, 2012

Landgrebe et al., Neuroimage, 2009

Schmidt et al., Plos One, 2013

Maudoux et al., Plos One, 2012

...the more information goes from the parahippocampus to AC

Vanneste et al., submitted

3. Memory

Selective anterior choriodal artery amytal injections

Amytal injection **ipsilaterally** resulted in **a maximal suppression of tinnitus of 30%,** and **contralaterally of 60-70%** in **three patients** with unilateral chronic tinnitus

De Ridder et al., Acta Oto-Laryngologica, 2006

The brain involved in tinnitus

Mohan, De Ridder & Vanneste, submitted

Hub: Pregenual ACC

Vanneste & De Ridder, J Neurosurg Sci 2013

Hub: Pregenual ACC

Vanneste & De Ridder, J Neurosurg Sci 2013

Hub: Pregenual ACC

Noise cancelation system

Rauschecker, Neuron, 2010

Song & Vanneste, Plos One, 2015

Noise cancellation system

Hub: Pregenual ACC

b. AAC deep brain implant

Permanent relief

Vanneste et al., Brain Stimulation, 2012

De Ridder & Vanneste, 2015, neurosurgery

Conclusion

• Different subtypes of tinnitus

• Dependening on the underlying mechanism: different treatment?