

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE Mech Aero 2018 (7-8 Nov) Atlanta

Enhanced Processing and Hybridization of Silica Aerogel Composites

SUNIL CHANDRAKANT JOSHI PERIYASAMY MANIKANDAN

Inputs taken from WWW resources for enriching this presentation are gratefully acknowledged

Aerogel Composites

Aerogel Particles

[Cabot Corp[®] (USA)]

Industrial Name	: Silica,(TMS)-oxy modified
Raw state	: Solid Particle form
Particle size	: 0.7 – 0.4mm
Mean pore diameter	: 20nm
Bulk density	: 65 – 85kg/m ³
Melting temperature	: Above 500 °C
Operating temp	: 300 – 350°C
Source: Mahesh Sachithanadam, Sunil Chandrakant Joshi. Silica Aerogel Composites: Novel Fabrication	

Eco-Friendly Aerogel Composites: Synthesis

Fabrication of Flat Aerogel composite Panels

Early Technique

- After freeze drying, the panel is not flat and exhibit **Synclastic curvature**
- Cast mixture. Cover the surface using **porous transparent plastic sheet.**

Processing Techniques

Fabrication of Flat Aerogel composite Panels

Modified Technique

- Cast mixture. Cover the open surface using transparent perforated rigid polycarbonate sheets. Seal firmly.
- Perforations on the polycarbonate sheet to facilitate vacuum circulation during freeze drying.

• Led to a perfectly flat uniform thick panel

Processing Techniques for Different Morphologies

- Same technique extended to different flat and curved shape parts using appropriate moulds.
- Feasible to fabricate solid and/or hollow sections of wide range of thicknesses.
- Presence of uniform holes on moulds allow adequate vacuum.

Allows uniform sample thickness

Salient Features of developed technique

- Fabricate complex contours
- High integrity
- Complete dry
- Uniform thickness.

Advantages of additional reinforcements

- Additional reinforcements, like Glass fibre mesh, Nylon mesh, etc., used to facilitate casting of wet aerogel mixture.
- It not only facilitated but also eased production of complex contour shapes

- Moreover, it enhances mechanical performance of resultant Aerogel composite structures.
 - Greater Flexibility
 - More Load carrying ability

Intrinsic hybridization

Advantages

- Ultra low density (Light weight)
- Excellent thermal/sound Insulation
- High Strain recovery characteristics
- Pollution filter and etc..

Hybrid Aerogel composites

Intrinsic Hybridization

Additives as precursor with aerogel granules

- FSC: Aerogel granules + fumed Silica powder
- CAC: Aerogel granules + Carbon Nanotubes (CNTs)
 - Negligible increase in weight
 - Improved compactness

Extrinsic Hybridization

Additional macro reinforcement

- Continuous glass fabric cloth
 - Fabric cloth placed along the planar surface
- Dis-continuous short glass fibre whiskers
 - Fabric cloth placed along the planar surface
- Significant increase in weight
- Excellent mechanical performance

Characteristics of Intrinsic Hybridized Aerogel Composites

Hydrophobicity: Measurement of contact angle ensures the additives doesn't alter the hydrophobic property of aerogel composites.

SAC: Standard Aerogel Composites; FSC: Fumed Silica aerogel Composite; CAC: Carbon nanotube Aerogel Composite

Characteristics of Intrinsic Hybridized Aerogel Composites

Stress relaxation behaviour

SAC: Standard Aerogel Composites; FSC: Fumed Silica aerogel Composite; CAC: Carbon nanotube Aerogel Composite

Stress relaxation behaviour follows Kohlrausch function

$$\sigma(t) = \sigma_o e^{-t^b} + \sigma_{\infty}$$
on both sides
$$K_r = K_1 e^{-t^b} + K_a$$

$$K_r \approx 0.23 e^{-t^b} + 0.75$$

□ Nearly 23% of compressive stress released without unloading aerogel samples of hybrid kind.

Exhibit excellent stress damping property

Characteristics of Intrinsic Hybridized Aerogel Composites

due to flexure

Crack induced along whole

width of aerogel sample

Benchmark sample: Nomex honeycomb core (HSC) between single CFRP ply.

- □ Increasing compactness by adding fumed silica, FSC exhibit less flexural deformation compared to standard aerogel composite sample (SAC).
- □ Failure displacement of both SAC and HSC samples are almost same.
- □ Failure due to crack on tensile side exists only under the contact load point. The rest of the region shows perfect integrity.
 - Confirms that aerogel composites is a suitable core material for sandwich construction.

Characteristics of Extrinsic Hybridized Aerogel Composites

□ Four different configurations tested to investigate out of plane deformation

Characteristics of Extrinsic Hybridized Aerogel Composites

Flexural displacement of both standard and CC samples are same.

- No use of reinforcement placed along mid surface.
- □ Whiskers fabric samples **CW** shows more resistance to flexural
 - Higher peak load but smaller failure displacement.
 - Greater flexural displacement of **external reinforced** aerogel composite OGC.
 - Avoid the nucleation of tensile crack
 - Typical behaviour of flexible thin structure.

Summary

- □ Novel, eco-friendly, silica aerogel composites developed.
- Technique improvised to fabricate the composites of any shape (perfect flat to contoured circular sections) in either solid or hollow form.

- □ Influence of intrinsic additives precursors on physical and mechanical properties of the composites selectively studied.
- Preliminary results show that aerogel composites is a promising core material for sandwich structure.
- Excellent stress relaxation behaviour useful in stress dampening.

Summary

Despite a slight increase in weight, extrinsic glass fabric reinforcement of aerogel composites shows large flexural tolerance. Useful property.

Reinforcement also helps in forming contoured surfaces. Enhanced possibility of different applications.

e.g.: thermal barrier blankets

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

Thank you Questions?

Inputs taken from WWW resources for enriching this presentation are gratefully acknowledged