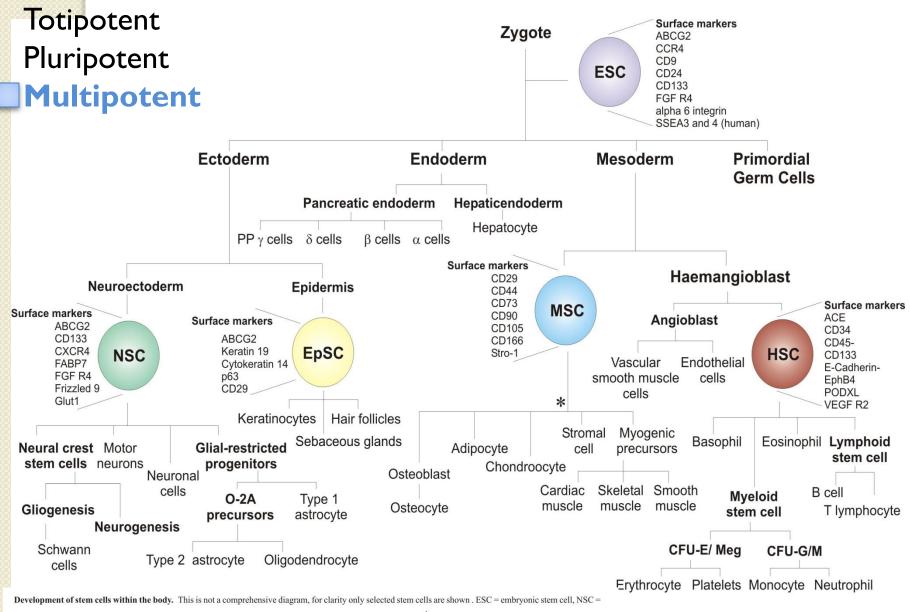
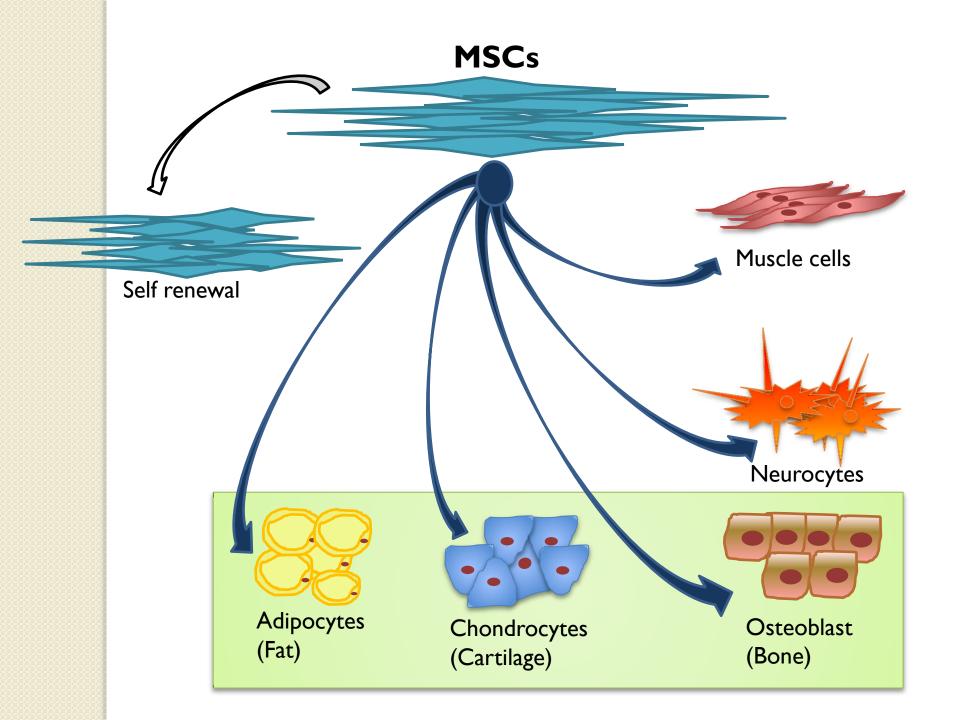
College of Medicine & Health Sciences @ Sultan Qaboos University

Mesenchymal Stem Cells to Repair Vascular Damage after Chemotherapy: Past, Present and Future

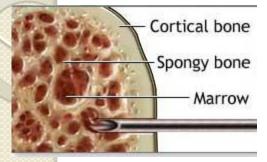

Cell Therapy 2014 Las Vegas, NV, USA

> Sulaiman Al-Hashmi, PhD Sultan Qaboos University Oman

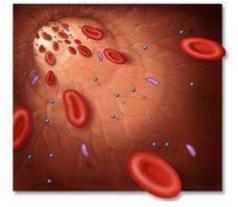
What are MSCs?


- Stem cell capacity
- Stromal property
- Non-hematopoietic cells
- Multipotent cells
- 0.001 0.01% of nucleated cells in BM
- Adhere to culture plate
- Express variable range of cell markers

 $neuronal stem \ cell, \ EpSC = epidermal \ stem \ cell, \ MSC = mesenchymal \ stem \ cell, \ HSC = haematopoeitic \ stem \ cell. \ * Differentiation \ of \ MSCs \ along \ neuronal \ lineages \ along \ neuronal \ ne$

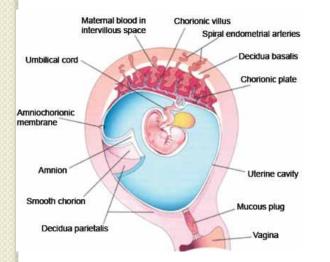

 $has also been demonstrated, see text for information. \ Modified from R\&D \ Systems \ website (http://www.rndsystems.com). \ Copyright BTR @ the second se$

http://www.york.ac.uk/res/bonefromblood/background/osteogenesis.html



MSC Sources

Bone marrow


Peripheral blood

Cord blood

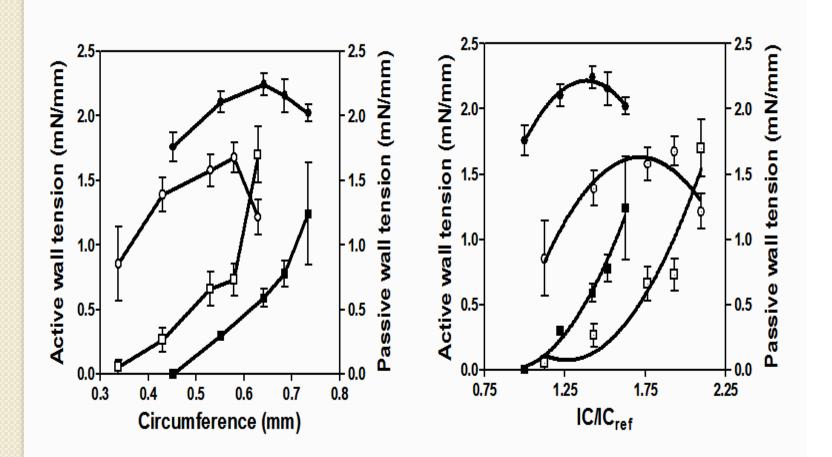
Placenta and fetal membrane

Adipose tissue

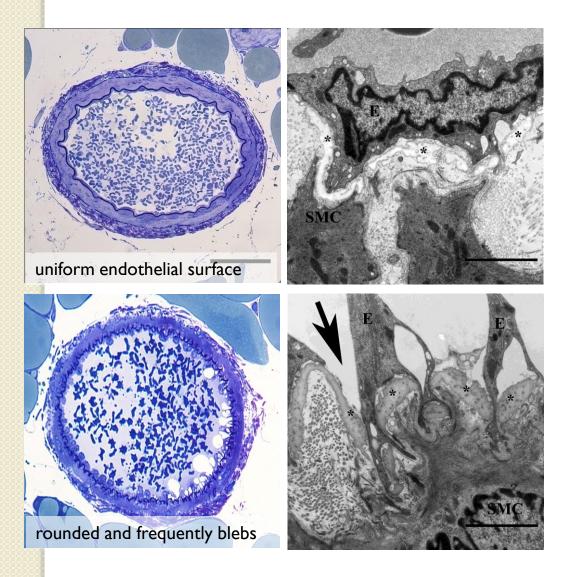
Common MSC Markers

Negative Markers	Roles		
CD34	Primitive hematopoietic cells and endothelial cells		
CD45	Leukocytes		
CDIIb and CDI4	Monocytes and macrophages		
CD 79α & CD19α	B cells		
HLA Class II	Antigen presenting cells and lymphocytes		
Positive Markers			
CD73/5'-Nucleotidase	Catalyzes production of extracellular adenosine from AMP		
CD90/Thy I	Wound repair, cell-cell and cell-matrix interactions		
CD I 05/Endoglin	Vascular homeostasis; modulates TGF- β functions via interaction with TGF- β receptors (RI & RII)		

MSC Clinical Applications


Hematopoietic Stem Cell Transplantation Enhance engraftment Reduce graft versus host disease Solid Organ Transplantation Improved graft function **Reduced** rejection Repair Vascular Damage Chemotherapy **Radiotherapy** Others

Chemotherapy and Vascular Toxicity


TABLE 1. Cardiotoxicity Profiles of Chemotherapeutic Agents

		-		
Drug Class/Name, Generic (Brand)	Cardiac Adverse Events	Relative Frequency of Specific Adverse Effect*	Relative Frequency of Therapeutic Use†	Comment
Anthracyclines/anthraquinolo	ones			
Doxorubicin (Adriamycin) Daunorubicin (Cerubidine) Epirubicin (Ellence, Pharmorubicin) Idarubicin (Idamycin)	CHF/LV dysfunction	+++	+++	Risk of CHF is cumulative dose and schedule dependent; LV dysfunction is secondary to free radical production; increased risk for young/elderly, after mediastinal XRT, female gender, history of cardiac disease; continuous infusion, liposomal delivery systems, or use of dexrazoxane can reduce toxicity; when appropriately administered, incidence of LV dysfunction is $<\!5\%$
Mitoxantrone (Novantrone)	CHF/LV dysfunction	++	+	Anthraquinone derivative; low propensity for free radical production; myocarditis and arrhythmia can be seen acutely with infusion
Alkylating agents				
Busulfan (Myleran) 🗲 🗕	Endomyocardial fibrosis Cardiac tamponade	+++++	+	
Cisplatin (Platinol)	lschemia Hypertension	++ ++++	+++	
	CHF	++		CHF risk is increased in elderly, after chest XRT, or after prior anthracyclines
Cyclophosphamide < (Cytoxan)	Pericarditis/ myocarditis CHF	+++	+++	Rare incidence of hemorrhagic myocarditis, more common with high dose CHF risk is increased with cumulative dose, in elderly, after chest XRT, or after prior anthracyclines
lfosfamide (lfex)	CHF Arrhythmias	++ ++	++	CHF risk is increased with cumulative dose, prior anthracyclines
Mitomycin (Mutamycin)	CHF	++	+	CHF risk is increased with cumulative dose, prior anthracyclines, chest XRT

Bu-Cy and Vascular Toxicity

Bu-Cy and Vascular Toxicity

Control •Unbroken endothelial cell-cell contact

Bu-CyDetaching of endothelial cellsCell-cell contacts were disrupted

Chemotherapy & Vascular Toxicity

- Cisplatin-based therapy
- Testicular cancer patients
- Before and after chemotherapy

				Tab	IC 2. VO		Cinto		
	Age			Platelets* (× 10 ⁹ /L)		Fibrinogen* (g/L)		∨WF* (%)	
Patient	(years)	Event	Time	Before	After	Before	After	Before	After
1	31	MI	Day 15, course 2	393	673	5.0	6.4	170	339
2	37	MI	Day 9, course 1	378	667	4.8	4.4	185	280
3	34	DVT (leg)	At diagnosis	348	264	3.9	3.1	104	139
4	23	DVT (subclavian vein)	Day 22, course 4	239	117	NE)	78	95
5	31	DVT (subclavian vein)	Day 9, course 2	217	270	NE)	86	140
6	28	PE	Day 11, course 4	285	196	4.6	3.4	88	173
7	22	PE	Day 15, course 2	755	245	7.3	4.4	133	145

Table 2. Vascular Events

MI, myocardial infarction; DVT, deep vein thrombosis; PE, pulmonary embolism; vWF, von Willebrand factor

MSC Source

• Rat BM

Injury induction

- Ligation of proximal left coronary artery
 - MI

MSC infusion

Infarct area (2 x 10⁶)

- Expressed muscle and endothelium markers
- Improved LV function

MSC Source

• Canine BM

Injury induction

- Ameroid constrictor placement
 - Chronic myocardial ischemia
- MSC infusion
 - Intramyocardial injections (10 x 10⁷)

- Improved ejection fraction & vascular density
- Increased vascularity
- Improved cardiac function
- MSC Differentiation
 - SMCs & ECs

MSC Source

- Porcine BM
- Injury induction
 - Occlusion followed by reperfusion of the anterior coronary artery
 - MI

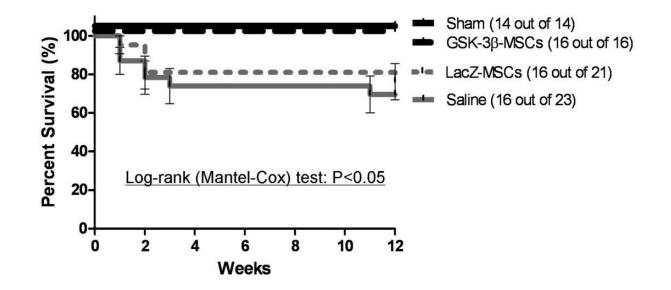
MSC infusion

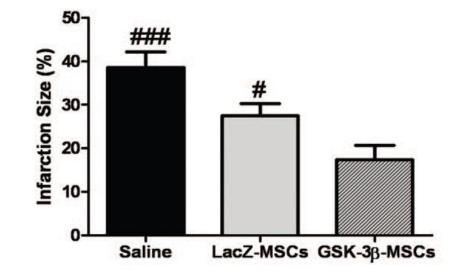
Intramyocardial injections (20×10^7)

- Improved myocardial blood flow
- Improved ventricular & late cardiac functions
 - Enhanced blood vessels maturation
 - Reduced endomyocardial apoptosis
 - Reduced infarct scarring

MSC Source

Porcine BM


Injury induction


Carotid artery cannulation

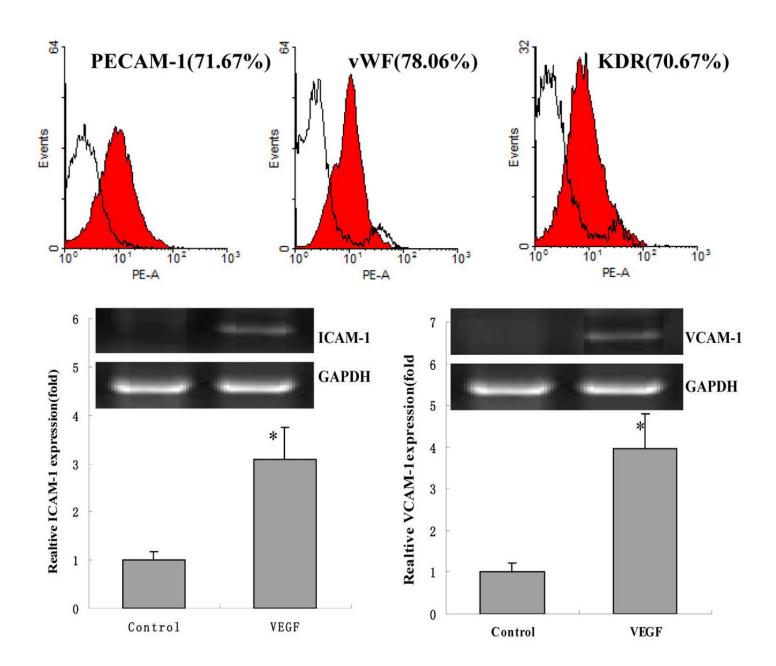
- MI
- MSC infusion
 - Transendocardial injections (10 x 10⁷)

- Differentiated into cardiomyocytes and vascular structures
- Stimulated endogenous cardiac stem cells proliferation and differentiation
- Stimulated cardiomyocyte replication
- Reduced infarct size

MSC Source C57BI/6 mice BM • Express GSK-3 β Injury induction Carotid artery ligation • MI MSC infusion Border zone of MI (1.5x 10⁵) Outcomes • GSK-3 β increased MSCs survival GSK-3 β -MSCs induced cardiomyocyte differentiation and angiogenesis GSK-3 β -MSCs increased capillary density GSK-3 β -MSCs upregulated paracrine factors (VEGF-A) 0

MSC Source

C57BI/6 mice BM


Injury induction

- Removal of endothelium with a flexible wire
 - Carotid artery injury

MSC infusion

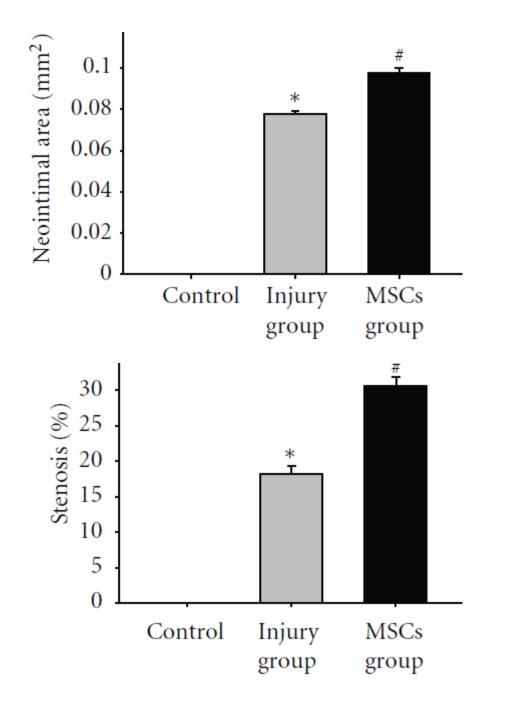
• IV injection $(I \times I0^5)$

- Differentiated into neo-ECs in the injury
- Contributed to vascular remodeling
 - Expressed different markers
- Formed the tube-like structure

MSCs in clinical practice (Meta Analysis)

- Searched databases
 - PubMed, OVID, EMBASE, the Cochrane Library, and ClinicalTrials.gov
- Outcome
 - Improved LVEF in patients
- Efficacy of Cells in transplantation influenced by
 - Source of cells
 - Route of infusion
 - Type of injury
- BMCs & MSCs infusion is a safe and effective therapy to improve vascular repair

Precautions


- Intra-myocardial calcification
- Vascular calcification
- Increase aortic stiffness
- Systolic hypertension
- Transient improvement
- Unregulated differentiation

Prospective

- MSC therapy under intensive investigation
 Establish clinical relevant vascular injury models
 Sources & doses
 - Timing
 - Protocols
- Collaboration
 - Type of disease
 - Data sharing

THANKS

Liao et al 2012

MSCs in clinical practice

TABLE 3: Ongoing clinical trials on MSCs: condition, intervention/dose, and followup in patients around the world (http://www.clinicaltrials.gov).

World	Condition	Intervention	Time frame	Phase/Status
	Chronic ischemic LV dysfunction secondary to MI	10 and 20 intramyocardial injections of 2 million MSCs (low dose) or 20 million (high dose)/0.25–0.5 cm ³ for a total of 20 million or 200 million cells, respectively	6–18 months	Phase I/II (unknown
Florida (IISA)	Chronic ischemic IV dysfunction and heart failure secondary to MI	Transendocardial injection of autologous human cells (bone marrow or mesenchymal). 40 million cells/mL delivered in either a dose of 0.25 mL/injection for a total of 100 million \times 10 injections or a dose of 0.5 mL/injection for a total of 200 million \times 10 injections	6–18 months	Phase I/II (unknown
Florida (USA)	Chronic ischemic IV dysfunction secondary to MI	Transendocardial injection of autologous versus allogeneic MSCs. 40 million cells/mL delivered in either a dose of $0.5 \text{ mL/injection} \times 1$ injection for a total of 20 million, a dose of $0.5 \text{ mL/injection} \times 5$ injections for a total of 100 million, or a dose of $0.5 \text{ mL/injection} \times 10$ injections for a total of 200 million MSCs	6–13 months	Phase I/II (active)
	Nonischemic dilated cardiomyopathy	Transendocardial injection of autologous versus allogeneic MSCs. 20 million cells/mL delivered in a dose of $0.5 \text{ mL/injection} \times 10$ injections for a total of 100 million of MSCs	6–12 months	Phase I/II (active)
Maryland (USA)	Chronic ischemic IV dysfunction secondary to MI	10 and 20 intramyocardial injections of 2 million MSCs (low dose) or 20 million (high dose)/0.25–0.5 cm ³ for a total of 20 million or 200 million of autologous human MSCs, respectively	6–18 months	Phase I/II (unknown
	Chronic ischemic LV dysfunction secondary to MI	Transendocardial injection of autologous versus allogeneic MSCs. 40 million cells/mL delivered in either a dose of 0.5 mL/injection $\times 1$ injection for a total of 20 million, a dose of 0.5 mL/injection $\times 5$ injections for a total of 100 million, or a dose of 0.5 mL/injection $\times 10$ injections for a total of 200 million MSCs	6–13 months	Phase I/II (active)
France (Europe)	Chronic myocardial ischemia; LV dysfunction	Transendocardial intramyocardial injections of 60 million autologous MSCs	30 days–2 years	Phase I/II (active)
China (East Asia)	ST-elevation MI	Intracoronary human umbilical WJ-MSC transfer	4 months–1 year	Phase II (active)
Korea (East Asia)	Acute MI	Intracoronary injection of single dose of autologous bone-marrow-derived MSCs (I million) cells/kg	6 months	Phase II (completed)
India (South Asia)	ST-elevation acute MI	A Single Dose of Intravenous infusion of Allogenic MSCs	6 months	Phase I/II (active)

Elnakish et al 2012

Cultivation	Adherence to plastic in standard culture conditions			
Phenotype	Positive expression (≥95%) CD 73 CD 90 CD 105	Negative expression (≤2%) CD 14 or CD 11b CD 19 or CD 79α CD 34 CD 45 HLA-DR		
<i>In vitro</i> differentiation:	Under specific stimulus, cells will differentiate into osteoblasts, adipocytes, and chondroblasts			

Table 2. Basic criteria for defining human MSCs

Cancer Gene Therapy (2014), 12 – 23